rospero

AES Bind

Prospero

C

AES Bindings

September 1990

Prospero Software

7 LANGUAGES FOR MICROCOMPUTER PROFESSIONALS

COPYRIGHT
Copyright © 1988, 1990 Prospero Software. All rights reserved.

This document is copyright and may not be reproduced by any method,
translated, transmitted, or stored irr a retrieval system without prior written
permission of Prospero Software.

Permission is granted to Prospero C licence holders to abstract and use any
of the programming examples.

DISCLAIMER

While every effort is made to ensure accuracy, Prospero Software cannot be
held responsible for errors or omissions, and-reserve the right to revise this
document without notice.

TRADEMARKS

Acknowledgement is made for references in this manual to Microsoft and
MS, which are trademarks of Microsoft Corp., to IBM, which is a
trademark of International Business Machines Corp., to Apple and
Macintosh, which are trademarks of Apple Computer Inc., to Digital
Research and GEM, which are trademarks of Digital Research Inc., to
Amstrad and Amstrad PC, which are trademarks of Amstrad Consumer
Electronics plc, to Atari and Atari ST, which are trademarks of Atari Corp.,
~ to Motorola and MC68000, which are trademarks of Motorola Inc., and to
Intel, which is a trademark of Intel Corp.

Prospero C, Pro Fortran-77, Prospero Fortran, Pro Pascal and Prospero
Pascal are trademarks of Prospero Software.

. Prospero Software, Inc. Prospero Software Ltd.

100 Commercial Street, Suite 306 190 Castelnau
Portland, Maine 04101 London SW13 9DH

US.A England

|

7 Contents

TABLE OF CONTENTS

1
2
3

— 000NN AW~

oo
NN AW —

Introduction to GEM AES

Using GEM AES
Application Library

Initialize Application
Pipe Read and Write

Find Application

Record and Playback Events

Set Disk Configuration
Application Yield
Exit Application

Event Library

Wait For Keyboard Event

Wait For Button Event
Wait For Mouse Event

Wait For Message Event

Wait For Timer Event

Wait For Multiple Events

Set Double Click Delay
Menu Library

Display Menu Bar
Check Menu Item
Enable Menu Item
Menu Title Display
Alter Menu Text
Register Accessory
Unregister Accessory
Create Menu Bar
Add Menu Title

Add Menu Item

Object Library
Add Object to Tree

Delete Object from Tree

Draw Objects in Tree

Find Object under Point

Calculate Object Offset
Alter Object Order
Edit Text Object

appl_init
appl read
appl_write
app! find
appl_trecord
appl_tplay
appl_bvset
appl yield
appl_exit

evnt_keybd
evnt_button
evnt_mouse
evnt_mesag
evnt_timer

evnt_multi

evnt_dclick

menu_bar
menu_icheck
menu_ienable
menu_tnormal
menu_text
menu_register
menu_unregister
menu_create
menu_title
menu_item

objc_add
objc_delete
objc_draw
objc_find
objc_offset
objc_order
objc_edit

Contents

Change Object State
Return Object State

0 Set Object State

1 Return Object Flags

2 Set Object Flags

3 Return Object Text

4 Set Object Text

5 Read/Write Object Header

6.16 Create Object Tree
6.17 Insert Item into Object Tree
6.18 Initialize Editable Text Object

7 Form Library

1 Process Form

2 Reserve Screen For Dialog

3 Draw Alert Box

4 Draw Error Box

5 Centre Dialog On Screen

6 Check Form Keyboard Input
7.7 Check Form Button Input

8 Graphics Library

8.1 Draw Rubberbanded Box
8.2 Drag Box Within Rectangle
8.3 Draw Moving Box

8.4 Draw Zoom Boxes

8.5 Track Mouse In Box

8.6 Track Sliding Box

8.7 Obtain Workstation Handle
8.8 Set Mouse Form

8.9 Return Mouse State

9 Scrap Library

9.1 Read Scrap Directory
9.2 Write Scrap Directory
9.3 Clear Scrap Directory

10 File Selector Library
10.1 Select File and Directory
11 Window Library

111 Create Window
11.2 Open Window

objc_change
objc_state
objc_newstate
objc_flags
objc_newflags
objc_text
objc_newtext
objc_read
objc_write
objc_create
objc_item
objc_tedinfo

form_do
form_dial
form_alert
form_error
form_center
form_keybd
form_button

graf rubbox
graf dragbox
graf_mbox
graf growbox
graf_shrinkbox
graf watchbox
graf slidebox
graf handle
graf _mouse
graf mkstate

scrp_read
scrp_write
scrp_clear

fsel input

wind_create
wind_open

106
109
111
113
115
117
119
121
121
125
128
133

136

138
141
144
146
147
149
152

154

155
157
160
162
162
164
167
169
171
174

176

177
179
181

182
183
186

192
194

|

l / Contents

11.3
114
I 11.5
11.6
11.7
11.8
l 11.9
11.10

[11.11
12

{ 12.1
12.2
12.3
l 12.4
12.5

13

Close Window

Delete Window

Inquire Window Attributes
Set Window Attributes

Find Window Under Point
Start or End Window Update

Calculate Window Coordinates

Set Window Title or Info

Set New Desktop

Resource Library

Load Resource File

Free Resource File Memory
Get Resource Address

Store Resource Address
Convert Object Coordinates

Shell Library

Shell Read
Shell Write

Shell Find

Search Shell Environment
Return Default Application
Set Default Application

Extended Graphics Library

Calculate Box Increments
Draw XORed Boxes

Index of Functions

wind close
wind delete
wind_get
wind_set
wind_find
wind_update
wind_calc
wind_title
wind_info
wind_newdesk

rsrc_load
rsrc_free
rsrc_gaddr
rsrc_saddr
rsrc_obfix

shel_read
shel write 1
shel write 2
shel find
shel envrn
shel rdef
shel wdef

xgrf_stepcalc
xgrf 2box

196
198
200
204
208
210
212
215
215
217

219

221
223
224
226
228

230

232
234
234
237
239
241
243

245

246
248

250

|

l y Section 1 — Introduction to AES AES-1

1 INTRODUCTION TO GEM AES
GEM AES, Prospero C, and the Bindings

What is GEM AES? Why should you want to use it? Why do you need bindings
before you can do so, and why should these bindings require such a large
amount of explanation in order to be used?

GEM AES stands for Application Environment Services (Digital Research
would have us believe that GEM also stands for Graphics Environment
Manager, though as it was at one stage known as Crystal it seems likely that the
name was invented before the acronym). The services which AES provides to
an application are intended to allow applications to use the WIMP interface
(this stands for windows, icons, mice and pull-down menus) which
distinguishes GEM applications from other applications. The WIMP interface
is a relatively new concept, designed to make computers and their software
much easier to learn and use without having to remember (or look up in a
manual) complicated commands such as PIP 1st:=b:mytext.txt [NT8].
To anyone who is familiar with CP/M it might be immediately obvious that the
above command should be used to cause a listing of the file mytext.txt on drive
b to be printed, with line numbers and tabs expanded to 8 spaces, but someone
who had never used CP/M would be hard pressed to guess what the above
meant, let alone guess how to print a file by trial and error!

With a well designed program using a wimp interface, the user does not have
to remember the commands to use, as they are set out as choices to be made in a
series of pull-down menus. He or she does not need to remember what possible
options can be chosen, as a dialog box will appear presenting all the choices
that need to be made at any stage in the proceedings. A conventional program
could prompt for each option in turn, but this will have the drawback of
causing much of the previous screen contents to scroll away, and the user will
have to answer questions about options about which they have no interest.

Ok, so you know what a wimp interface is — what makes GEM applications so
different from any other applications which have well designed input screens,
menus and so on? The first point is that every programmer has a different idea
of exactly how the interface should be driven, and therefore the user has to
learn a different set of keystrokes for every program that they use. Another
problem is that since the interface is likely to use low level hardware features,
implementing it on each new piece of hardware will involve a fair amount of
work. GEM AES aims to solve both these problems by allowing all GEM
applications to use a uniform interface, by means of a set of high level
procedures which can be used on any hardware for which a GEM device
driver has been written. Thus the writer of the application does not need to
spend time and effort designing a menu handling routine, or working out how
to support overlapping windows on screen — instead he or she can make the
relevant GEM calls knowing that they will have the same effect whether the

"YoIeasay [eN31(wolj J[qe[IeAr
I[00], s JowweISold WNHD Yl Ul punoj 3q UBd UONBWLIOJUI ISyIng
= SAUBISWNOID SWOS UT JSaIJul JO aq Aew SuIMO[[0] oY) JaAImOY “o[qissod
se Apjuaredsuen se s3uipuiq ay) £q pajpuey a1e s[1e}op Yyons [[B — sowweidord
D 9y uIdduod A[[ensn jou padu STV WHD 01 9IBLIdIUI [9AS] MO] oY,

/% Kelie Y OM 01 19jutod [erauan) 4/ {DNOTx QoM 3Fopadii
/% SN[BA 133AUI [V 4/ {@90OM UT 3x0ys gepodAj

-1 [enuew ay) Jnoy3noxy Apuanbaiy mdoo sad3 Suimoroy
3y ‘raaamoy ‘Ajdde Aayy yorym 03 uo0IOIS AY) Ul PIQLIOSIP oIk asay) jo
jsow pue ‘soroew pue s3d4) Jo 1equinu & saUYSp H'ANIGSHY 9[1) 19peay oy,

'$a3uByo JnoyIm
s3urpuiq oradsolrd oy yiim payul pue papidwood aq ued sSurpuiq piepuejs
sy asn o) paudisep sweisdoxd pue ‘sSurpuiq O yoreasoy [eNsiq [eurgro
sy yim ajqnedwod Ajsjeidwiod are sSurpuiq O oredsoiq sy swn ay) JO ISOIN

‘prepuels D [SNV pasodoxd
oy £q a3enduey D sy ojut paonponur sad£j0j01d uonouny ay) asn o) UIJILIMAI
PUE ‘papusIXa U23q dAey Inq ‘s3urpuiq D [BUISLIO 353Y) U0 paseq a1e sSuipuiq
O oxadsoiq sy, "s3urpuiq D Jo 198 & pauSisap os[e Koy ‘sainpasoid NAD 2yl
paugisap yoreasay [e381q USYA ‘STUIPUIQ Y SEB UMOUY SIB SUOIIOUNy SAY],
"a3en3uey [949] yS1y Syy JO SI[QELIBA OJUI YOBq SEAIE AIOWAW 3] JO JNO san[eA
wnjar Aue sa1dod uayy 9dnirsjul 2I1BMIJOS AU SAYBW PuB AIOWSW JO SBAIE
311 2y ur sanfea pambar oy dn s)as yorym ‘aFenduey [9a9] ySiy oy wolj
31qe|ied ‘papraoid st uonouny Surpuodsaniod e ‘S INHD dyl Aq papraoxd
$3unnOI 3y JO Yoea 10, "papiaoid 9q 03 spasu poyjaur 19339q €) osadsoiyg
se yons a3en3ue| [9A9] Y31y B WOIy WAY) SSIIO 0] JOPIO UI INQ ‘SIUNNOI
INFD 9y $s300e pinom uonedrjdde ay) moy aq pinom jey) uay) ‘“SenSue
A1quiasse ur uanum 3ureq st uoneosridde ue Jj *opod NGO oY) 01 A1jus asned
01 pajerauad jdnurojur aremijos e pue 13)sigar e ur paoerd uoy) a1e sassarppe
asoym ‘Arowawr jo seare ur sanfea dn Sumes Ag pasn a1e pue ‘SanIIoRy
13y sasn yorym uonedrdde NFD Sy Se Swi) Swes Y Je IOWIW Ul JUIPISal
are yorym swerdoxd se suryoew yoes 10j papiaoid are [qA pue STV AD UL

‘u2210s 2y Jo doy
) Je snuaw umop-{[nd sy woiy pauowwns 3q AJIpeal ued £3yj e ‘9[qB[IBAR
9 SPUBUIWIOD JEUM ISQUISWAI 0} Padu Jou [[Im ASU], "Yim Ierjiwe) Apeale
are Aoy suoyeodridde WO Iayio oy [U0 se Aem dwes ay) A[J0BXS Ul SUOp
aq [[1m 31 se ‘uonedridde NHD M3U JI9Y) UO MOPUIM B JO 9ZIS 3y} 95UBYD 0] MOy
Sururea] swn puads 03 pasu jou saop uoneoridde ay jo 19sn ay, ‘WO Suisn
Iandwod 19130 Aue 10 D penswy ue ‘IS Ly ue uo unt o3 Suod st werSord

S3V 0} UOIONPOIIU| — | UOID8S ¢Sav 4

|

I / Section 1 — Introduction to AES AES-3

GEM AES is entered by a software interrupt, with the address of a parameter
block contained in a register. This parameter block contains the addresses of 6
arrays through which information is passed to and from GEM AES, and is
declared as an extern struct as follows :-

extern struct AESparmblock {
WORD *pcontrol, *pglobal, *pintin, *pintout;
LONG *paddrin, *paddrout;
} AESparm;

These pointers are initialized to the addresses of six arrays, which are declared
as follows :-

extern WORD AES control([5
extern WORD AES global [1
extern WORD AES intin [1
extern WORD AES intout [8
extern LONG AES addrin [3
extern LONG AES addrout([2

The above declarations are included in the file AESBIND.H so that they can be
accessed directly from your program should you so wish — this will not
normally be necessary.

The AES_control array is used for each GEM call to indicate which GEM
AES routine is required, and how many parameters are being passed in the
other arrays as follows :-

Element Purpose

the function number required

the number of values passed in the AES_intin array

the number of values returned in the AES intout array
the number of values passed in the AES _addrin array

the number of values returned in the AES addrout array

AWN—O

The AES global array contains information about the application, set up by
the call of appl init at the start of the application, and occasionally referred
to in subsequent GEM AES routines. The information it contains is seldom of
direct interest to an application, and can generally be obtained by means of
various GEM functions. For details, see the GEM Programmer’s Toolkit.

/ AES-4 Section 1 — Introduction to AES

The AES intin array contains two-byte values to be used by the AES. In
general, all coordinates, numbers, flags, characters and so on passed as values
to the bindings are copied into the required position in this array. Note that
(unlike the VDI), when strings are passed in the AES, the address of the string
is passed via the AES_addrin array rather than by copying the characters into
the AES intin array, so that none of the AES bindings ever make use of
more than 16 words in this array.

The AES intout array is used to return two-byte values from AES
functions, which are then copied into the objects pointed to by any relevant
parameters by the bindings when values are to be returned. The first element
of the array always contains a copy of the function result.

The AES _addrin and AES addrout arrays are used to pass 32-bit addresses
to and from GEM AES - these might for example be the address of a tree
structure (see section 6) or of a message buffer.

I 7 Section 2 — Using GEM AES AES-5
2 USING GEM AES

I GEM AES contains a large number of routines which, once you understand
them, allow you to create a GEM application complete with all the standard
features of the GEM wimp interface. Before describing the functions in detail,
it seems in order to describe just what those features are, how a typical GEM
l application works, and why it works in that way.

The features to be found in a typical GEM application are as follows :-

l 1. It uses a mouse, which can be moved around on any flat surface and
causes a corresponding cursor form to move around the screen. This
mouse is used for many purposes — it can be used to indicate

l selection of a particular item, by pressing or releasing the button
when the cursor is over an object on the screen which represents that
item; it can be used to select a group of items by marking an area,

l pressing the mouse button at one corner, moving the pointer to the
opposite corner and releasing the button; it can be used to request a
particular action on a window by clicking or dragging one of a
number of window control points. Applications can make the mouse

l serve other purposes as well, but in almost every GEM application it
will serve the above purposes.

I 2. It has a pull-down menu bar across the top of the screen. When the
mouse cursor is moved within this area, a menu drops down with a
list of options to select. An option is selected by moving the mouse

I pointer over the option and clicking.

3. It uses overlapping windows, which are used to separate different
classes of output. These windows can normally be manipulated by the
I user by clicking the mouse button when the pointer is over particular
portions of the window. Thus the user can change the size and
position of each window, control which window is currently on top,
l and so on.

4. It uses dialog boxes to get information from the user. These are
drawn over the windows giving a number of options to be selected by
l clicking in boxes, and/or text to be filled in. The appearance of the
dialog box changes to reflect the choices made. When the user has
finished making choices, they click in a box (usually marked OK) and
I the dialog box is removed from the display by redrawing whatever
was obscured by it. The dialog boxes behave to some extent like
paper forms to be filled in — the user is free to fill them in in
I whatever order they like, to ignore some sections and so on.

/ AES-6 Section 2 — Using GEM AES

So how does an application provide all the above features? A lot of the work
involved in providing such an interface is performed by GEM AES, so that it is
relatively simple to provide a sophisticated, user friendly interface that will
immediately be familiar to users as being consistent with all other GEM
applications. The place to start is with a resource file.

The resource file is a concept that originated on the Apple Macintosh as a
means of allowing programs to be easily convertible to different countries, so
that all messages could be translated without having to recompile the program.
The concept rapidly progressed, so that resources on the Macintosh are now
used to contain a huge variety of information that may be of use to an
application. Some of this idea has been used in GEM, so that data structures to
be used by an application can be created once and for all in the resource file
then loaded into memory to be used by the application. This process is very
much preferable to having to construct the data structure dynamically every
time the program is run — this is expensive in coding effort, code space and
execution time.

The resource file of a typical GEM AES application will contain a menu bar,
several dialog forms, perhaps some icon definitions, perhaps some strings to
be used for alerts etc. It is a good idea to place all messages in the resource file
for translation to different countries. The resource file is created using a
resource editor (for example the RCS provided with the GEM Programmers
Toolkit, or one of the resource editors available separately), which also creates
a header file to be included by a C program, defining macros to give values to
names by which the program can refer to the various entities within the
resource file. The application loads this file into memory using rsrc_load
(section 12.1) as part of its initialization process, and can then obtain the
addresses of any objects within it using rsrc_gaddr (section 12.3)

For simple applications, or where it is important to have a single file rather
than separate resource and code files, Prospero C provides several extra
functions for dynamically creating menu bars and dialog forms. These are
described in section 5.8 to 5.10, and 6.16 to 6.18. Note however that the use of
these functions is likely to increase the code size by more than the size of the
equivalent resource file, so that the use of resource editor is recommended
where practical.

The first stage of an application’s initialization process is to call appl init
(section 3.1), which allows GEM AES to allocate any space it needs to store
information about the current state of this application, and generally prepare
itself for use. The next step is to load the resource file using rsrc_load, or
dynamically create the menu bar and any dialogs which will be used, as
described above. If the resource file cannot be found, the application will not
be able to proceed any further — it can either invite the user to indicate the
directory and name where the resource file is to be found, or more normally

l 7 Soction 2 - Using GEM AES AES-7

simply report that the resource file is missing using form alert (section
7.3) then terminate.

I The next stage of the initialization is to prepare the menu bar for use — the
address within the resource file is obtained using rsrc_gaddr. Often an
application will want to set up the state of some menu items to reflect the

[current setting of any options — for example any menu items which are not

immediately appropriate must be disabled using menu_ienable (section
5.3), those which correspond to currently selected options might be checked

l using menu_icheck (section 5.2) or have their text altered using
menu_text (section 5.5). Once the menu bar is suitably initialized, it can be
displayed and enabled using menu_bar (section 5.1).

l The application may also wish to open some windows at this stage — perhaps to
represent a new empty document for a word processor or editor application,
or to contain the text of the document which was opened to start the application

I (this can be discovered using shel read — section 13.1). To open a window,

it is necessary to discover the resolution of the screen — more specifically, the
coordinates and size of the area of the screen below the menu bar is required.

[This area is usually referred to as the Desktop, and is regarded as a window
with the special window handle zero. Thus the application can use wind get
(section 11.5) to obtain the size of its work area. The size of this work area will

I normally be used as a window’s maximum size when creating a window using
wind create (section 11.1) — certainly the window must not be larger.
Creating a window in this way does not cause it to be displayed on screen — this
is achieved using wind open (section 11.2). The application should the

[determine the work area of the newly opened window using wind get
(section 11.5) and is then free to output VDI graphics or text to this area, or to
draw an AES object tree within it, as described in section 6.

I Once all the initialization is complete, the application is ready to accept user
input. The user may respond in a number of ways — for example by typing
keys, by selecting a menu item, by clicking the mouse button, by moving the

I mouse, or simply by doing nothing for a while. Each of the above is an

example of what is known in GEM AES as an event, and can be detected using
one of the functions in the event library (section 4). GEM applications
l normally operate by waiting for an event, performing whatever action is
indicated by that event, then waiting for the next event. Thus each application
will have a main event loop, which simply waits for each event and calls the
I relevant processing routine. The heart of this routine will almost always be a
call to evnt _multi (section 4.6) which allows the detection of any of a
number of different occurrences. A simple program, or one in the early stages
of development, may use a call to evnt _mesag (section 4.4) instead — this
l will allow the detection of message events only, and ignore any keystrokes. As
menu selections and manipulation of window control points are both notified
using messages, quite a lot can be achieved without the need for any keyboard

/ AES-8 Section 2 — Using GEM AES

input. Forms and dialogs (described in sections 6 and 7) can be used to request
further information on what is required from the user.

If any windows are displayed on the screen, then unless the application is
certain that all parts of every window will be visible at all times, the
application will need to be able to respond to redraw messages from the screen
handler when portions of the windows are revealed. It will be extremely
unusual for this not to be necessary, as the use of a menu bar implies that desk
accessories can be started up (and can therefore obscure any portion of the
screen). The use of any dialog boxes (other than alert boxes) will also cause
areas of the screen to be obscured. An application will also need to respond to
other window control messages if any windows displayed use any of the
features (other than NAME or INFO) described in section 11.

To respond to a window control message is usually fairly straightforward —
for example to respond to a WM_MOVED message the application would
simply set the window’s coordinates using wind set (section 11.6) to those
requested in the message. You might therefore wonder why the message is sent
at all — why could GEM AES not simply move the window ? The reason for
sending a message is so that the application can take other action — for example
the application might allow windows to lie only in certain positions.

To respond to a redraw message is slightly more complicated — the application
must output the window’s contents, but only to those portions of the window
which are visible. The procedure for doing this is described in more detail in
section 11.

Having repeatedly waited for an event, processed it, then waited for another
event, the application will eventually be asked to process the event that
corresponds to the user selecting QUIT from the menu. At this point the
application should tidy up and then end, to return to the GEM Desktop
application. The tidying up is extremely important, as if it is performed
wrongly the next application to execute may find itself in trouble.

The first step in the tidying up is to close and delete all windows. Normally an
application will know whether any window represents unsaved work by the
user, and invite the user to save it before quitting. The window may then be
closed using wind close (section 11.3), which causes it to be removed from
the screen, then deleted using wind delete (section 11.4) to allow the
window handle and its associated workspace to be reused by a subsequent
application.

Once the windows are cleaned up, all that remains is to disable the menu bar
using menu_bar (section 5.1) and release the resource file memory using
rsrc_free (section 12.2). The application then calls appl exit (section
3.1) to indicate that it no longer requires the use of any of GEM AES’s
functions or data structures, and terminates.

|

I / Section 2 — Using GEM AES AES-9

Desk accessories are very similar, the main difference being that they do not
terminate, but should execute the main event loop indefinitely. Desk
accessories cannot easily be debugged, so it is usually best to write the
accessory as a normal application at first, then only when it is working convert
it into a desk accessory. This requires a few small changes to the program
logic, as described below.

Desk accessories should not initially create or open any windows, as these
would not then be available to the main application. In fact very little
initialisation is required other than calling menu_register (see section 5.6)
to install the accessory in the Desk menu. The accessory can then wait for an
AC_OPEN message indicating that the menu item has been selected, and the
desk accessory is to become active. At this point, the accessory should open any
windows it requires, and enter its main event loop, just as for a normal
application. If another AC_OPEN message is received while the accessory is
still active, it should bring its window to the top rather than opening a new one,
to avoid running out of windows. When an AC_CLOSE message is received,
ora WM_CLOSED message if only one window is open, the accessory should
close and dispose all windows, release any other memory it does not require,
and return to the inactive state, waiting for an AC_OPEN message.

/ AES-10 Section 3 — Application library
3 APPLICATION LIBRARY

This section contains descriptions of the Application Library functions, in the
following sub-sections.

Section Function description Binding name

3.1 Initialize Application appl init

3.2 Pipe Read and Write appl read
appl write

3:3 Find Application appl find

34 Record and Playback Events appl trecord
appl tplay

35 Application Disk Set appl bvset

3.6 Application Yield appl yield

3.7 Application Exit appl exit

The functions in the Application library are assorted housekeeping routines,
concerned with controlling the initialization and use of various application data
structures.

/ Section 3 — Application library AES-11

3.1 Initialize Application appl_init
Initialize Application is provided to alert GEM to the fact that you are going to
run a GEM application and that it should provide you with various facilities,
and initialize global information about your application.

3.1.1 Definition

The Prospero C definition of Initialize Application is :

WORD appl_ init (void);

3.1.2 Purpose

An application should call this once at the start of any program which makes
calls to GEM AES. It sets up various global areas that are used by all other
AES functions.

3.1.3 Parameters

There are no parameters.

3.1.4 Function Result

The value returned is the application’s global identifier, which may be needed
for one or two other GEM AES function calls. If this value is —1, the
application could not be initialized, and should terminate without making any
further GEM AES calls.

3.1.5 Example

if (appl_init() == -1)
exit (3); /* Unsuccessful initialization */

7 AES-12 Section 3 — Application library

3.2 Pipe Read and Write appl_read
appl write

The application pipe is a message buffer which is specific to each application;
an application will normally read from its own pipe and write to other
applications’ pipes. The commonest use of pipes is for messages sent by the
GEM screen handler to indicate menu selection or window manipulation, in
which case messages will be received using the evnt _mesagor evnt _multi
functions described in section 4. However, an application can use the message
pipes for other, more general communication between itself and other
applications or desk accessories, using these two functions.

3.2.1 Definition
The Prospero C definitions of Pipe Read and Pipe Write are :

’

WORD appl read (WORD id, WORD length, WORD pbuff[]);
WORD appl write (WORD id, WORD length, WORD pbuff[])

3.2.2 Purpose

These functions allow an application to read a message from its own pipe or to
write to its message pipe or that of another application. A common use of
appl write is for an application to send a message to itself to simulate for
example a menu selection or a GEM redraw request — it can also be used to
send a message to a desk accessory such as a print spooler.

It is not normally necessary to use appl read to receive messages, as the
standard 16-byte messages from the GEM screen handler are received using
evnt_mesag or evnt multi (see section 4); however, if a message is
received (via evnt mesag) with a non-zero value in word 2, indicating that
the message length was not 16 bytes and there is more to come, appl read
should be used to read the remainder.

l y Section 3 — Application library AES-13

There is a standard message format for passing information between
applications, using a 16-byte message to pass the address of a larger message as
{ follows :-

word 0 : Message type (1024 to 32000)
word 1 : Sender’s application identifier

! word 2 : -1
word 3 : Length of message at the given address
word 4 : First word of address of message

l word 5 : Second word of address of message
word 6 : Application specific
word 7 : Application specific

! If the above message passing protocol is in use, appl_read will not be used,

as the 16-byte message described above should be received via evnt_mesag
orevnt multi.

3.2.3 Parameters

! Parameter Type of Parameter description
name parameter Function of parameter
I id WORD Identity number

The application identifier of the application
whose pipe is to be read or written. This can be

! obtained from appl_init orappl_find.
length WORD Length

l The number of bytes to be read or written.
pbuff WORD/] Pipe buffer

l The parameter pbuf £ gives the location to or

from which the message is to be transferred. A
pointer to an array of suitable size should be

} passed. It is up to the application to ensure that
the array is large enough to hold the number of
bytes being read or written.

7 AES-14 Section 3 — Application library
3.2.4 Function Result

The value returned is zero if an error occurred, or greater than zero if no
error was detected.

3.2.5 Example

WORD pipe buffer[20];
WORD my id;

main ()
{ my_id = appl init();

/* Send myself a message */
appl_write(my_id, 40, pipe buffer);
/*40 bytes = 20 words*/

! 7 Section 3 - Application library AES-15

3.3 Find Application appl_ find
l In order to write to the message pipe of another application, an application
needs to find its ap_id number; this function does that.

| 3.3.1 Definition

The Prospero C definition of Find Application is :
l WORD appl find(char pname[9]);
l 3.3.2 Purpose

This is used to discover the application identifier of another active application.

3.3.3 Parameters

Parameter Type of Parameter description
l name parameter Function of parameter
pname char[9] Application name
I This parameter is the filename of the application

whose identifier is to be returned. The filename
passed should be the (up to) 8 characters before

l the dot separating the name from the extension,
terminated with a null character.

I 3.3.4 Function Result

The value returned is a WORD containing the application identifier of the
l specified application, if it is active. A value of 1 indicates that the application
is not active.

l 3.3.5 Example
WORD cal id;
l WORD message buffer(8];

cal id = appl_find("CALCLOCK");

/* Send a message to the calculator accessory */
appl write(cal id, 16, message_buffer);

7 AES-16 Section 3 — Application library

3.4 Record and Playback Events appl_trecord
appl_tplay

This pair of functions allow an application to record and playback a series of
mouse or keyboard events. They could be used to implement teaching
programs, demonstration programs, a macro facility, or to provide a repeat-
last-action facility, or an undo-last-action facility (though this is likely to be
more complicated since any data thrown away has to be recorded in case it is
needed for undo).

3.4.1 Definition
The Prospero C definitions of Record and Playback Events are :

WORD appl_trecord(WORD tbuffer[], WORD tlength);
WORD appl_tplay (WORD tbuffer([], WORD tlength,
WORD tscale);

3.4.2 Purpose

These two functions allow the application to record or play back a series of
mouse or keyboard events. The events are stored in an array of structures of
the following form :-

8086 processors :

struct {
WORD event; /* 0,1,2,3 => timer, button,
mouse, keybd */
long info;

}

68000 processors :

struct {
long event; /* 0,1,2,3 => timer, button,
mouse, keybd */
long info;

}

|

l 7 Section 3 - Application library AES-17

The meaning of the info field depends upon the event in question, but is always
4 bytes in length. For a timer event, it gives the number of milliseconds

l elapsed; for a button event, the low word is the button state and the high word
is the number of clicks; for a mouse event the low and high words contain the
mouse’s X and Y coordinates respectively, while for a keyboard event the low
word contains the character typed, the high word contains the keyboard state.

l More information on all these values can be found under the relevant routine
in the event library.

3.4.3 Parameters

Parameter Type of Parameter description
l name parameter Function of parameter
tbuffer WORD[] Recording buffer
[This parameter is used to pass the address of the

array which stores the events. This should be an
array of t length objects of the form

I described above.
tlength WORD Recording length
[This parameter gives the number of events to be

recorded or played back. The application must
ensure that this does not exceed the size of the

| recording array.
tscale WORD Playback speed
l This parameter controls playback speed, from 1

to 10000, where 100 is normal speed, 50 is half
speed, 200 is double speed and so on.

’ (appl_tplay only)

Y AES-18 Section 3 — Application library
3.4.4 Function Result

The function appl trecord returns the number of events recorded —
normally this will be the same as the value passed in the parameter t length,

but in GEM version 2.0 it is possible to terminate a recording by entering ctrl-
backslash (\).

The function appl tplay always returns 1.

3.4.5 Example

long buffer [400];
WORD i, size;
FILE *evntfile = fopen("evntdata", "wb");

size = appl_trecord(buffer, 400);
/* Write them to a file */
fwrite(evntfile, buffer, size, sizeof (long)) ;

/* Play them back full speed */
appl tplay(buffer, size, 100);

|

l y Section 3 — Application library AES-19

3.5 Set Disk Configuration appl_bvset

This function allows an application to set the disk configuration information
used by GEM. It is not provided in GEM version 1.1

3.5.1 Definition

The Prospero C definition of Set Disk Configuration is :

void appl bvset (WORD bvdisk, WORD bvhard) ;

3.5.2 Purpose

This is used to tell GEM what disk drives are in the system, and which are hard
disks.

3.5.3 Parameters

Parameter Type of Parameter description
name parameter Function of parameter
bvdisk WORD Disk bit vector
bvhard WORD Hard disk bit vector

These parameters are interpreted as 16 one-bit
values indicating which drive letters A to P
correspond respectively to disk drives and hard
disk drives in the system. The most significant
bit represents drive A, with a bit value of 1
indicating that the drive is present.

3.5.4 Function Result

There is no function result.

3.5.5 Example

/* Drives A, B, C; C is hard */
appl bvset (0xe000, 0x2000);

7 AES-20 Section 3 — Application library
3.6 Application Yield appl_yield

Application Yield is provided so an application can allow other active
applications or desk accessories to execute. Normally GEM will check whether
it is another application’s turn to run whenever an application makes an event
library call. If an application does not make any event calls for a while, it will
not allow other applications or accessories to operate during this time. This is
not desirable, especially in Multitasking GEM which may appear shortly — if
an application is not making event library calls (perhaps during a large
computation, or a compilation) it should call this function every (say) second
or so to allow other applications or accessories to have their events processed.

This function is not supported by GEM version 1.1, though a similar effect can
be achieved using evnt_timer (see section 4.5) with a delay of zero.

3.6.1 Definition
The Prospero C definition of Application Yield is :

void appl yield(void);

3.6.2 Purpose

This function is used by an application to force a dispatch, to allow other
applications’ events to be processed if any are ready.

3.6.3 Parameters

There are no parameters.

3.6.4 Function Result

There is no function result.

3.6.5 Example
long int i;

for (i = 0; 1 < 100; i++)
{ ~calculate(i);
appl_yield();
/* yield every so often in a big calculation */

I 7 Section 3 - Application library AES-21

3.7 Exit Application appl_exit

Exit Application is provided to alert GEM to the fact that an application is
about to terminate, and no longer requires various facilities.

3.7.1 Definition
The Prospero C definition of Exit Application is :

WORD appl exit (void);

3.7.2 Purpose

This function is used by an application to notify GEM AES that no further AES
calls are to be made, and is normally called by a program which is about to
terminate. Once this call has been issued, GEM will reallocate the memory
previously occupied by an application’s global information, and reuse the
application’s identifier. No GEM calls should be issued after appl exit.Itis
important to tidy up windows and so on before terminating — all windows
should be closed and deleted (in that order), and wind_update (see section
11.8) must have been correctly used so that the application is not in window
update or mouse control mode, otherwise the next application (usually the
GEM desktop) will not be able to run correctly.

3.7.3 Parameters

There are no parameters.

3.7.4 Function Result

The value returned is zero if an error occurred, or greater than zero if no
error was detected.

3.7.5 Example

main ()
{ if (appl_init () != -1)
{ /* Do lots of GEM calls */

ééél_exit();
}
}

7 AES-22 Section 4 — Event library
4 EVENT LIBRARY

This section contains descriptions of the Event Library functions, in the
following sub-sections :-

Section Function description Binding name
4.1 Wait For Keyboard Event evnt_ keybd
4.2 Wait For Button Event evnt_button
43 Wait For Mouse Event evnt mouse
4.4 Wait For Message Event evnt mesag
4.5 Wait For Timer Event evnt_timer
4.6 Wait For Multiple Events evnt multi
4.7 Set Double Click Delay evnt_dclick

GEM applications work in an event driven manner: rather than continually
checking the keyboard, the mouse, the message pipe, the menu bar and so on to
see if anything has happened, they decide what they want to happen, then wait
until it does. A typical GEM application will have one loop in which it waits
for an event, usually one of several, so that the user can respond by pressing a
key, clicking the mouse, or selecting a menu item or a window control point.
When an event occurs, the application will determine which sort of event it
was, and what the user intended its effect to be, then go away and cause that
effect to happen. When the processing generated by that event is over, the
application returns to the main loop to wait for the user’s next instruction.
These events should not be confused with interrupts, as GEM AES has no way
of notifying an application that something has happened until the application
asks. GEM events are basically an efficient way of handling all input from the
user to an application. Note that the GEM VDI input functions should not be
used by an application which uses the AES — all input from the user should be
by means of the event library, or using the form library to allow the user to
interact with a dialog or alert box (this will itself make use of the event library
routines internally).

l

l 7 Section 4 — Event library AES-23

GEM is in a very limited way a multi-tasking system. Large computers have
complex operating systems which share the processor power among a number
of users so that each task appears to the user to be running in a separate
computer. GEM does this to a small extent, in that desk accessories can
continue to operate while another program is active. The way in which this is
achieved is by using events to receive input — when an application is waiting for
input, it calls one of these functions, which notifies GEM AES that the
application can do no more until the specified event occurs. GEM AES will
check whether any active application was waiting for an event which has now
occurred, and when it finds one that application will be brought into context.
In standard GEM, only one main application can be active at any time, but a
number of desk accessories can also be active and waiting for events — in fact
all desk accessories installed will be waiting for an event of some sort — if they
haven’t yet been opened they will be waiting for a message event which GEM
AES will send to them when the user selects their menu item. If each accessory
in the system was given a share of the processor to check every so often
whether a message had occurred, there would be very little processor time left.
By using events, GEM AES can see what has happened then check who might
be interested, which is a very much more efficient way to behave.

There are 5 different types of event corresponding to different user actions or
forms of input, as follows :-

Keyboard events — akey is pressed

Button events — the state of the mouse buttons changes

Mouse events — the user moves the mouse into or out of an area
of the screen

Message events — these can come from a variety of sources, and
are described further later

Timer events — the user does nothing for a while

An application can wait for each of these types of event, or it can wait for any
one of a combination of them, depending upon what input is appropriate.
Waiting for a single event is not particularly useful, as the application would
not then be notified of events of any other type. Even if a particular input is not
appropriate, it is more user-friendly if an application responds in some way to
that action, perhaps by beeping if the mouse is clicked in the wrong place, or if
a key is pressed when no keyboard input is appropriate.

7/ AES-24 Section 4 — Event library

Keyboard Events

Keyboard events occur when a key is pressed on the keyboard. The application
can discover what the key was, as both its ASCII code and scan code are
returned. GEM treats all keyboards as a standard keyboard — this is very useful
when trying to write portable applications, as the ASCII and scan codes will
always relate to the same keys. When it receives a keyboard event, the
application can discover if it wishes whether the control, alt or shift keys are
depressed, using the function graf mkstate (section 8.9).

Button Events

Button events occur when the state of a particular mouse button or buttons
enters (or in GEM version 2.0 leaves) the state for which the application is
waiting. The application can specify which buttons it is interested in, and what
state it is waiting for. In order to recognise double clicks in a consistent way in
all applications, and at the same speed, double click detection is built in to
button event detection. The application specifies the maximum number of
times that the specified button state is to be detected before the event is
reported. After detecting the mouse button state, the event manager will not
return immediately, but continue to check the mouse button state until either
the specified maximum number of clicks has been detected, or a standard time
delay has passed, returning the number of clicks that were counted. In this way
an application can specify whether it wants double clicks to be recognised, and
detect when they occur.

Mouse Events

Mouse events occur when the mouse enters or leaves an area of the screen.
They are normally used to change the mouse form depending upon what part
of the screen it is over, and in particular to fulfil GEM’s requirement that
mouse forms other than the arrow or busy cursor may only be used within the
work area of the active window. Mouse events are also useful for detecting
movement of the mouse, for example when ‘dragging’ by holding down the
button while moving the mouse. If an application wished to perform a
different action depending upon whether the mouse is clicked or dragged, it
would first wait for a button event indicating that the button was down, then
wait for one of the following events to occur: either a button event indicating
that the button has been released, or a mouse event indicating that the mouse
has left the area of the screen that it previously occupied. The size of the
rectangle specified depends upon the amount of movement permitted before
the application wishes to recognise a drag, and could be anything from one
pixel square upwards.

l 7/ Section 4 — Event library AES-25

Having detected a drag, the application will continue to wait for the same two
events, changing the screen to reflect the effect of the drag whenever the
mouse moves, until it detects the button has been released. The function
graf dragbox (section 8.2) may be used in many situations to do much of
this work for the application.

Timer Events

Timer events occur when a specified amount of time has elapsed. On their own
they are not very useful, but they can be used to put a limit on the wait for
other events, perhaps to check periodically for a button press while continuing
to calculate rather than suspending all calculations until the button is pressed.

Message Events

Message events are perhaps the most important sort of events, which make all
the difference between GEM applications and non-GEM applications.
Messages can be sent from other processes, such as desk accessories, but this is
not their most important function. Messages are also sent to applications by the
GEM AES screen manager, which is responsible for monitoring all interaction
between the mouse and the menu bar and window control points like the slider
bars, size box and so on. When the user makes a menu selection, or clicks on or
drags a window control point, the application must know that this has
happened, and which item or control point was selected, and what was done
with it. If each application had to detect a mouse click, check which window
control point it was over, monitor the mouse as it dragged a slider, and so on,
this would make all applications very much larger, and almost certainly make
all their interfaces different, Instead of this, all such interactions are handled
by the AES screen manager. Only when the user has decided where to place the
slider and released the button does GEM AES notify the application what has
happened, and where the slider has been placed. It does this by sending a
message, in one of the standard predefined forms. All message events return an
8-word message in the following format:

word 0 — the type of the message (see below)
word 1 — the identifier of the process that sent the message
word 2 — the length of the message, excluding the 8 words here

words 3 to 7 — meaning depends upon message type

All messages from the screen manager are exactly 8 words, so contain zero in
word 2. However, messages passed between applications can define their own
message types and forms, so long as the first 3 words correspond to this
convention. Any additional portion of the message (if this value is not zero)
must be read using appl read (section 3.3).

7 AES-26 Section 4 — Event library

The predefined messages sent by the screen manager are as follows:
Word 0 Name (in AESBIND.H)

10 MN_SELECTED

Sent when the user selects a menu item. The object indices of the title and item
are returned in words 3 and 4 of the message respectively.

20 WM_REDRAW

Sent to an application when part of the work area of one of its windows needs
redrawing. The handle of the window is given in word 3 of the message, while
words 4 to 7 give (in raster coordinates) the x and y coordinates, width and
height of the area to be redrawn. This should be intersected with the window’s
visible rectangle list before redrawing — see section 11 for more information.

21 WM_TOPPED

Sent when the user has requested that a new window is made active. The handle
of the window concerned is passed in word 3 of the message. The application
can carry out this request by making the specified window active using
wind_set (section 11.6).

22 WM_CLOSED

Sent when the user has clicked in the close box of the active window. The
window’s handle is passed in word 3 of the message. The application can carry
out this request by using wind_close (section 11.3). Note that the screen
manager does not itself close the window when the user clicks in the close box,
but asks the application to do it. This allows the application to reject the request
if, for example, the window represents a document that has not yet been saved.

23 WM_FULLED

Sent when the user clicks in the active window’s full box, in the top right of the
title bar. The window’s handle is passed in word 3 of the message. By
convention, GEM applications respond to this by enlarging the window to its
maximum size, or shrinking it to its previous size if it is already full size. This
can be done using wind_set (section 11.6).

I

l y Section 4 — Event library AES-27

Word 0 Name (in AESBIND.H)
24 WM_ARROWED

Sent when the user clicks on an arrow, indicating a scroll of one ‘row’ or
‘column’, or in the slider bar, indicating a scroll of one page. The handle of the
active window is given in word 3 of the message, while word 4 contains a code
indicating what type of scroll has been requested, as follows:

0 page up

1 page down
2 row up

3 row down

4 page left

5 page right

6 column left
7 column right

The application is free to decide how to interpret a row, column or page, or to
ignore the request. If the application does redraw the contents of the window to
reflect the scroll, it should also alter the slider position to reflect the change,
using wind_ set (section 11.6).

25 WM_HSLID

Sent when the user has dragged the horizontal slider to a new position. The
handle of the active window is given in word 3 of the message. Word 4
contains a value in the range 1 to 1000, indicating the slider position requested
by the user, 1 meaning the left-most position, 1000 meaning the right-most.
The application will normally redraw the window to display the requested
portion of the document or image, and alter the position of the slider to reflect
the change. The new slider position set by the application need not be the same
as that requested — normally the closest value that corresponds to an exact
‘column’ of whatever the window contains will be used.

26 WM _VSLID

Sent when the user has dragged the vertical slider to a new position. The handle
of the active window is given in word 3 of the message. Word 4 contains a
value in the range 1 to 1000, indicating the slider position requested by the
user, | meaning the top and 1000 meaning the bottom.

7 AES-28 Section 4 — Event library
Word 0 Name (in AESBIND.H)

27 WM_SIZED

Sent when the user drags the active window’s size box to a new position,
indicating that the window’s size should be altered. The handle of the window
is passed in word 3 of the message, while words 4 to 7 contain the requested
coordinates, width and height of the window (the coordinates will be the same
as those already set for the window). The application will normally select the
nearest appropriate size to that requested, and set the window to that size using
wind_ set (section 11.6). The application should not respond to this message
by redrawing any new portions of the window — if the window is enlarged in
either direction, GEM AES will send a redraw message to make the application
redraw the new portion anyway.

28 WM_MOVED

Sent when the user drags the active window to a new position by dragging in
the title bar. The handle of the window is passed in word 3 of the message,
while words 4 to 7 contain the requested coordinates, width and height of the
window (the width and height will be the same as those already set for the
window). The application will normally select the nearest appropriate position
to that requested, and set the window to that position using wind set (section
11.6). If the window was previously partially offscreen, this may cause a
redraw message to be issued. Note that if an application is outputting text to a
window, the process will be very much faster if the text is output to a word-
aligned pixel. Many applications therefore select the nearest window position
to that requested which will cause the text displayed within to be on a word
boundary.

30 WM_UNTOPPED

Sent when an application’s window is about to be made inactive, and therefore
liable to be obscured. The handle of the window is passed in word 3 of the
message. The application can then save any image contained in the window, or
take other appropriate action. This message is not sent in GEM version 1.1.

l

I 7 Section 4 — Event library AES-29

Word 0 Name (in AESBIND.H)
40 AC_OPEN

Sent to a desk accessory application when its menu item has been selected.
Word 3 of the message contains the menu item identifier of the accessory
selected, as returned by menu_register when the name was placed in the
desk menu. An application which contained two or more accessory functions,
and therefore added more than one name to the Desk menu, would use this
value to see which had been requested. The accessory application should open a
window and activate the required accessory, or if the window is already open,
it should bring it to the top.

41 AC_CLOSE

Sent to a desk accessory application when the current application terminates,
or the screen is about to be cleared. The accessory should close and delete any
windows, then await an AC_OPEN message. Word 3 of the message contains
the accessory’s menu item identifier.

Many of the above messages correspond closely to the window control points
described in section 11. It is important to note that a window which does not
have a particular feature cannot cause the message corresponding to that
feature to be generated. Note also that when a user interacts with the window,
by dragging it or clicking its boxes, this does not in itself cause the window to
be moved or whatever. It is purely by convention that when an application
receives a WM_MOVED message, it moves the window to the specified
position. A perverse programmer could easily create a window whose close
box caused the window to be fulled, and whose full box caused the window to
be closed. Such an application is unlikely to be popular with its users — one of
the best features of GEM applications is that they have a uniform interface, so
that the amount a user has to learn and remember is greatly reduced.

7 AES-30 Section 4 — Event library
4.1 Wait For Keyboard Event evnt_keybd

Wait For Keyboard Event is the basic get character function of GEM; it can
also be used to get any other key. This function should only be used where a
character on the keyboard is the only possible response the user can make. It
will not be widely used except in simple programs, as a GEM application
normally offers the user several alternative means of response. This is possible
using evnt_multi (section 4.6)

4.1.1 Definition
The Prospero C definition of Wait For Keyboard Event is :

WORD evnt keybd(void);

4.1.2 Purpose

This function is used to wait for any key to be pressed.

4.1.3 Parameters

There are no parameters.

4.1.4 Function Result

The value returned is a 2-byte integer, whose low byte gives the ASCII code of
the key pressed (0 for a non-ASCII key, such as a function key) and whose high
byte gives the standard IBM PC scan code of the key. These can be referenced
as result%256 and result /256 respectively.

4.1.5 Example

char ch;

/* Wait for a capital letter */
do {
ch = evnt keybd() % 256;
} while (!isupper(ch));

or simply

evnt keybd(); /* Wait for a key before continuing */

l Z Section 4 — Event library AES-31
4.2 Wait For Button Event evnt_button

Wait For Button Event is used to wait until a particular mouse button state is
l detected. This might be used when processing a simple form, or at other times

when no other events are allowed. If the application wishes to recognise other

events as well, such as keys being typed or menus being selected, it must use
l evnt_multi (section 4.6).

l 4.2.1 Definition
The Prospero C definition of Wait For Button Event is :

l WORD evnt_button (WORD clicks, WORD mask, WORD state,
WORD *pmx, WORD *pmy,
WORD *pmb, WORD *pks);

4.2.2 Purpose

l This function waits until the state of the mouse buttons matches that specified
by the parameters mask and state. The function will return when the
required state has been entered the number of times specified by the clicks

I parameter, or when a certain time interval has passed since the state was
detected for the first time — this delay can be adjusted using the function
evnt_dclick (section 4.7). Thus if the value of clicks is 1, the function
will always return as soon as the required state is detected, while if it is greater

l than 1, the function will return shortly after the state was first detected,
counting how many times the state is reentered up to the value specified. An
application should pass a value of 2 in the pa .meter clicks if it wants to

I recognise single or double clicks and take different action according to which
is detected. Higher values could be used to allow the detection of triple clicks,
but most users will not be able to click fast enough within the time permitted.

l The number of times that the state was detected is returned as the function
result.

The function also returns the mouse position, the state of all the mouse buttons,
l and the state of the shift, control and alt keys at the time it returns. The key
states may be used to modify the meaning of a mouse click — for example
clicking on an object might select it and deselect the previously selected
l object(s), while clicking with the shift key depressed might select it without
deselecting any other selected objects.

7 AES-32

Section 4 — Event library

4.2.3

Parameters

Parameter Type of

name

parameter

Parameter description
Function of parameter

clicks

mask

state

pmx
pmy

pmb

WORD

WORD

WORD

WORD *
WORD *

WORD *

Button clicks

This parameter specifies the number of mouse
button clicks for which the function should wait;
it should normally be set to 1 or 2 depending on
whether single clicks only or double and single
clicks are required.

Button mask

This parameter is a bit map specifying which
button or buttons should be monitored; thus a
value of 0x0001 monitors the left button,
0x0002 the right button, and 0x0003 monitors
both buttons. GEM can theoretically support a
mouse with up to 16 buttons.

Button state

This parameter is a bit map similar to mask; it
is used to indicate for each button specified by
mask whether button up (0) or button down (1)
is to be detected. For example if mask is set to
0x0003, a state of 0x0001 means that the
function should wait until the left button is down
and the right button is up.

Mouse coordinates

These parameters point to the objects where the
final position of the mouse will be returned, in
pixels from the top left corner of screen.

Mouse button state return

This parameter points to a bit map similar to
mask which is used to return the state of all the
mouse buttons when the function returns. Thus
0x0001 means the left button is down, 0x0002
means the right button is down, and 0x0003
means both buttons are down.

|

AES-33

l / Section 4 — Event library

pks WORD * Key state return
This parameter points to an object into which is
[written the current state of the Shift, Control
and Alt keys as a bitmap with the following
I meanings
0x0001 Right Shift key depressed
0x0002 Left Shift key depressed
[0x0004 Control key depressed
0x0008 Alt key depressed
This result is provided so that applications can
l make use of these keys to modify the result of a
mouse action — for example Shift-Click can be
used to signify “extend a selected area of text” in
I a situation where Click is used to reposition the
text cursor.
l 4.2.4 Function Result
The value returned is a WORD specifying the number of times the required
I state was entered within the double-click delay period.
l 4.2.5 Example
WORD kstate, dummy, mx, my;
WORD nclicks;
I /* Wait for the left hand button to be depressed up to

2 times, ignoring final button state */
nclicks = evnt_button(2, 1, 1,

if (nclicks == 2)

[)

smx, &my, &dummy, &kstate);

{ /* Process a double click */

else if (kstate & 0x0003)
{ /* One or both shift keys down
I - process a shift click */

}

else

{ /* Process a standard click */

| }

/ AES-34 Section 4 — Event library
4.3 Wait For Mouse Event evnt_mouse

Wait For Mouse Event allows an application to watch the position of the mouse
as it moves around the screen and take appropriate action. The function
watches a specified rectangle; it returns when the mouse enters or leaves that
rectangle.

4.3.1 Definition

The Prospero C definition of Wait For Mouse Event is :

WORD evnt_ mouse (WORD leave, WORD x, WORD vy,
WORD width, height,
WORD *pmx, WORD *pmy,
WORD *pmb, WORD *pks) ;

4.3.2 Purpose

This function allows an application to watch the mouse position, and detect
when it enters or leaves a specified rectangle. In applications programming
mouse watching is used to change the mouse shape to provide visual feedback
to the user, and to fulfil GEM’s requirement that mouse forms other than the
arrow and the busy cursor form are only permitted within the work area of the
active window. An example of this can be found in many editors; the user
expects a text cursor (a vertical bar) to select text within the document, and a
pointer to move around the menu or the control areas of the window. By
changing the pointer when it crosses the work area boundary, the application
indicates immediately which are control areas and which are writing areas. A
simple example of how to use evnt_mouse to achieve this is given in section
4.3.5 — note however that for any but the simplest cases or testing purposes,
evnt_multi will have to be used (section 4.6), as applications normally want
to be able to detect other actions (clicks, key presses, menu selections etc.) at
the same time as keeping the mouse cursor form correct.

The principles of using the mouse rectangle watch of evnt _multi are exactly
the same, except that evnt _multi allows an application to watch two
completely independent rectangles at the same time. This might be used when
different areas of a window’s work area had different uses, and therefore
required different cursor forms. One rectangle would be used to check when
the mouse left its current area of the window, while the other would check that
the mouse was within the window as a whole.

I 7 Seciion 4 — Event library AES-35
4.3.3 Parameters

Parameter Type of Parameter description
I name parameter Function of parameter
leave WORD Enter or leave flag
[This parameter specifies whether the function

should return when the mouse enters or leaves
the watch rectangle specified by the next four
I parameters. If leave has the value zero,
evnt mouse returns when the mouse enters
the rectangle. If 1eave has the value one it

I returns when the mouse leaves the rectangle.
x WORD Watch rectangle X coordinate
y WORD Watch rectangle Y coordinate
[width WORD Watch rectangle width
height WORD Watch rectangle height
I The coordinates and size of the rectangle to be
watched.
pmx WORD * Mouse X coordinate
I pmy WORD * Mouse Y coordinate

These parameters point to objects used to return
l the final position of the mouse when the
function returns.

pmb WORD * Mouse button state return
[This parameter points to an object which will
contain the current state of the mouse buttons
when the function returns. Each bit of the result
[corresponds to one mouse button, with the least

significant bit corresponding to the left hand

button. A bit value of 1 indicates the button is
[down, while 0 means it is up. Thus 0x0001

means the left button is down, 0x0002 means the

right button is down, and 0x0003 means both
l buttons are down

7 AES-36 Section 4 — Event library

pks WORD * Mouse key state return

This parameter points to an object which is
assigned the current state of the Shift, Control
and Alt keys as a bitmap with the following
meanings :-

0x0001 Right Shift key depressed
0x0002 Left Shift key depressed
0x0004 Control key depressed
0x0008 Alt key depressed

4.3.4 Function Result

The value returned is reserved, and will always equal one.

4.3.5 Example

WORD mx, my; /* Mouse coordinates */

WORD x, y, w, h; /* work area coordinates */
WORD dummy; /* for unwanted extra info */
WORD inside; /* 0 means outside area */
inside = 0;

/* We could set the initial value according to whether
the mouse was in the rectangle, but if we just
guess, it doesn't matter if it is wrong as
evnt_mouse will return immediately if the return
condition is already satisfied

xRyl

while (1) /* forever */
{
evnt mouse(inside, x, y, w, h,
&mx, &my, &dummy, &dummy) ;
inside = !inside;
/* evnt_mouse returns when the value of inside no
longer corresponds to the mouse position */

if (inside)

graf _mouse(1l, 0); /* Text cursor */
else

graf mouse (0, 0); /* Arrow */

l 7 Section 4 — Event library AES-37
4.4 Wait For Message Event evnt_mesag

Wait For Message Event is provided to allow a program to await the arrival of
l a standard system message. These can be sent by other applications, but are

most frequently received from the screen manager to indicate that the user has

selected a menu, or operated one of the window control points. See the
I introduction to section 4 for details of the standard messages.

I 4.4.1 Definition

The Prospero C definition of Wait For Message Event is :
I WORD evnt mesag (WORD pbuff[8]);
l 4.4.2 Purpose

The purpose of Event Message is to wait until the arrival of a standard 16-byte
message. The only normal source of messages is the GEM AES screen handler,
l which notifies the user of events such as menu selection or user interaction
with the window control points. This function always returns a 16-byte
message — if the message is longer, this is indicated by the second word being
non-zero. If an application wants to detect other events as well, such as key
I presses or mouse clicks, it must use evnt _multi (section 4.6). However,
many simple applications which simply wait for a menu item to be selected,
then perform the required action, will not need to recognise other events, and

i so will use evnt _mesag in the main event loop.

l 4.4.3 Parameters
Parameter Type of Parameter description
name _parameter Function of parameter

[pbuff WORD[8] Message buffer

This parameter provides the location in which
l the 8-word message received is returned.

7 AES-38 Section 4 — Event library
4.4.4 Function Result

The value returned is reserved, and will always equal one.

4.4.5 Example

#define MN SELECTED 10 /* In AESBIND.H */
#define tdesk 3 /* Sample constants provided */
#define tfile 5 /* by resource editor */

WORD buffer[8];
WORD quitting = 0;

do {
evnt _mesag (buffer);
switch (buffer([0]) /* Contains type of message */
{
case MN_SELECTED: switch (buffer(3])
/* Contains index of title */
{
case tdesk: dodesk (buffer(4]);
break;
case tfile: dofile(buffer(4]):;
break;
/* One function per title */
}
/* could also handle window messages */
}
} while (quitting == 0);

/* quitting would be set to 1 by dofile if QUIT
was selected */

l

I 7 Section 4 — Event library AES-39

4.5 Wait For Timer Event evnt_timer

Wait For Timer Event is used to wait for a specified length of time. It should
only be used when a pure delay function is required — for an interruptible
timer, or to place a time limit on other functions the timing facilities in
evnt_multi should be used (see section 4.6).

4.5.1 Definition

The Prospero C definition of Wait For Timer Event is :

WORD evnt timer (WORD locnt, WORD hicnt);

4.5.2 Purpose

This function allows an application to wait for a specified length of time. This
in itself is unlikely to be useful very often, though when combined with other
event waiting in evnt_multi (section 4.6) its usefulness greatly increases.
Note that any other application which is ready to run (such as a desk accessory)
may be brought into context when this call is made, which means that the delay
may be longer than that requested. This function could also be used simply in
order to allow other applications to come into context, by specifying a very
short delay. GEM version 2.0 provides a better way of achieving this using
appl yield (section 3.7).

4.5.3 Parameters

Parameter Type of Parameter description

name parameter Function of parameter

locnt WORD Millisecond timer (low word)
hicnt WORD Millisecond timer (high word)

These parameters are used to specify the period
in milliseconds for which the function should
wait.

7 AES-40

Section 4 — Event library

4.5.4 Function Result

The value returned is reserved, and will always equal one.

4.5.5 Example

evnt _timer (1000,

evnt timer(l, O0);

0);

/* Wait 1 second */

/* Allow other processes a go */

! / Section 4 — Event library AES-41
4.6 Wait For Multiple Events evnt_multi

I Wait For Multiple Events is probably the most important function in GEM

AES, and forms the core of every serious application. This is a do-everything

function — the Swiss Army Knife of GEM event handling, and as a result it has

an excessive number of parameters and returns a lot of results. If only one type

] of event is required, an application should by preference use one of the
following functions instead:

I Wait for a keystroke evnt_keybd section 4.1
Wait for a mouse click evnt_button section 4.2
Watch for mouse movements evnt _mouse section 4.3
Wait for a standard message evnt _mesag section 4.4
’ Wait a specified time evnt _timer section 4.5

Only if an application wants to detect more than one of these events should it
I use evnt multi.

I 4.6.1 Definition

The Prospero C definition of Event Multi is :

I WORD evnt multi (WORD flags,
WORD bclk, WORD bmsk, WORD bst,

WORD mlleave,

WORD mlx, WORD mly, WORD mlw, WORD mlh,
l WORD m2leave,

WORD m2x, WORD m2y, WORD m2w, WORD m2h,

WORD mepbuff (8],

WORD tlc, WORD thc,
l WORD *pmx, WORD *pmy, WORD *pmb,

WORD *pks, WORD *pkr, WORD *pbr):;

7 AES-42 Section 4 — Event library
4.6.2 Purpose

The purpose of Event Multi is to wait until an event happens. This can be one
or more of up to six different sorts of event, each specified by a particular bit
in the parameter flags as follows:

Event Value Name

a key being pressed 0x0001 MU _KEYBD
mouse button change 0x0002 MU BUTTON
mouse entering or leaving a rectangle 0x0004 MU M1
mouse entering or leaving another rectangle 0x0008 MU M2

the arrival of a standard system message 0x0010 MU MESAG
the expiration of a time delay 0x0020 MU TIMER

The above values are provided as named constants in the file AESBIND.H;
they can be combined using the | operator to indicate what combination of
events the function should wait for.

A normal GEM based application will initialize itself, perhaps open a window
or two, then perform an evnt_multi call to wait for further instructions
from the user. Whenever an event is received, the application decides what the
event was and what the user wanted done, and goes away and does it. When this
is complete, the application returns to the main loop containing the
evnt_multi call to see what the user wants to do next. Thus at least one
evnt_multi call is likely to be at the heart of any GEM based program which
makes proper user of the desktop; if you don’t have a window and don’t allow
Desk Accessories, programming will certainly be easier, but it will hardly be
GEM.

The purpose and typical usage of each of the events is described further in the
relevant sub-section. However, the ability to wait for a time to elapse takes on a
new usefulness when combined with other event waiting. For example, an
application can use this to put a time limit on other events, so that if nothing
happens within a certain time the user gets a reminder that they are expected to
make a response. Alternatively, an application doing some long calculation
could check periodically to see if the user has clicked on a button labelled stop,
using the timer event to return quickly and continue calculating if no click has
occurred.

!

] 7 Section 4 — Event library

AES-43

Parameter description
Function of parameter

4.6.3 Parameters
Parameter Type of
l name parameter
l flags WORD
l
I
l
|
} bclk WORD
l
l bmsk WORD
l
I bst WORD

Event flags

This parameter is used to indicate what events
the application is waiting for. Each bit
corresponds to one of the possible events, as
described under 4.6.2 above. Often the value
passed will be a combination (using |) of the
relevant constants from the AESBIND.H file —
if a particular combination is used frequently it
can be declared as a new constant with the
relevant bits set. It is also sometimes useful to
pass a variable, so that the events enabled
depend upon the state of the program. For
example, an application might only be interested
in button events when the mouse is within the
window work area.

Button clicks

This parameter is used when button events are
enabled — it specifies the number of times a
button state is to be entered before returning.
See the description of the parameter clicks in
section 4.2.3 for further information.

Button mask

This parameter is used when button events are
enabled — it specifies which mouse buttons are to
be checked. See the description of the parameter
mask in section 4.2.3 for further information.

Button state

This parameter is used when button events are
enabled — it specifies the state (up or down) for
which each mouse button is to be checked. See
the description of the parameter state in
section 4.2.3 for further information.

7 AES-44

Section 4 — Event library

mlleave

mlx
mly
mlw
mlh

m2leave

m2x
m2y
m2w
m2h

WORD

WORD
WORD
WORD
WORD

WORD

WORD
WORD
WORD
WORD

First watch rectangle leave flag

This parameter is used when mouse events are
enabled for the first mouse rectangle — it
specifies whether the application is waiting for
the mouse to leave or enter the rectangle. See
the description of the parameter leave in
section 4.3.3 for further information.

First watch rectangle X coordinate
First watch rectangle Y coordinate
First watch rectangle width
First watch rectangle height

These parameters are used when mouse events
are enabled for the first mouse rectangle — they
specify the coordinates and size of the rectangle
being watched. See the descriptions of the
parameters x, y, width and height in section
4.3.3 for further details.

Second rectangle leave flag

This parameter is used when mouse events are
enabled for the second mouse rectangle — it
specifies whether the application is waiting for
the mouse to leave or enter the rectangle. See
the description of the parameter leave in
section 4.3.3 for further information.

Second rectangle X coordinate
Second rectangle Y coordinate
Second rectangle width
Second rectangle height

These parameters are used when mouse events
are enabled for the second mouse rectangle —
they specify the coordinates and size of the
rectangle being watched. See the descriptions of
the parameters x, y, width and height in
section 4.3.3 for further details.

AES-45

l 7 Section 4 — Event library

mepbuff

[tlc
thc

pmx
pmy

pmb

pks

WORD [8]

WORD

WORD

WORD *
WORD *

WORD *

WORD *

Message buffer

This parameter is used when message events are
enabled — it provides the location in which
messages received are returned.

Millisecond timer (low word)
Millisecond timer (high word)

These parameters are used when timer events
are enabled — they specifies the number of
milliseconds for which evnt_multi should
wait, if no other enabled event occurs first.

Mouse X coordinate
Mouse Y coordinate

These parameters point to the objects used to
receive the final position of the mouse on return
from evnt multi, whatever the event was
that caused it to return. They thus combine the
functions of the parameters pmx and pmy of
both evnt button (section 4.2) and
evnt_mouse (section 4.3).

Mouse button state return

This parameter points to the object used to
receive the final state of the mouse buttons on
return from evnt multi, whatever the event
was that caused it to return. It thus combines the
functions of the parameter pmb of both
evnt button (section 4.2) and evnt_mouse
(section 4.3).

Keyboard state return

This parameter points to the object used to
receive the final state of the control, shift and
ALT keys on return from evnt_multi,
whatever the event was that caused it to return.
It thus combines the functions of the parameter
pks of both evnt button (section 4.2) and
evnt_mouse (section 4.3).

Section 4 — Event library

pbr

4.6.4

WORD *

WORD *

Function Result

Key pressed

This parameter points to the object used to
return the value of the key pressed, when
keyboard events are enabled. An object must be
provided to receive this value, even if keyboard
events are not enabled. The value stored is only
valid if keyboard events are enabled, and a
keyboard event in fact happened — this can be
determined by testing the MU _KEYBD bit of
the evnt_multi function result. The value
stored in the object gives both the ASCII code
and scan code of the key pressed, in the low and
high bytes respectively, equivalent to the value
returned by evnt keybd — see section 4.1.4
for more details.

Button clicks

This parameter points to the object used when
button events are enabled to return the number
of times the specified state was entered within
the double click delay period. An object must be
provided to receive this value, even if button
events are not enabled. The value is only valid if
button events are enabled, and a button event did
in fact happen - this can be determined by
testing the MU_BUTTON bit of the
evnt_multi function result. The value stored
is equivalent to that returned by evnt_button
— see section 4.2.4 for more details.

The function result is a bitmap indicating which event or events caused the
function to return, using the same bit values as for the parameter f1ags. The
application can test each bit by seeing whether, for example ((result &

MU_KEYBD)

= 0):

l Y Section 4 — Event library AES-47
4.6.5 Example

It is difficult to give a short example of the use of evnt multi; a complete
l program using evnt_multi is included with the software issue disk.

However, the following example shows a simple example of using two
l evnt _multi features together. It uses evnt multi to wait for a keystroke
for one second only :-

#define MU KEYBD 0x0001 /* From AESBIND.H file */

l #define MU _TIMER 0x0020

WORD which, key, dummy;
I WORD dummy buffer([8];
/* Wait 1 second for a key to be pressed */

I which = evnt multi (MU_KEYBD | MU_TIMER,

0,0,0, /* MU_BUTTON parameters */
0:0,0,0,0; /* MU_M1 parameters */

l 0,0,0,0,0, /* MU_M2 parameters */
dummy buffer, /* for MU MESAG*/

1000, O /* return after 1 sec
if no key */

l &dummy, &dummy, /* mouse coords not used */
sdummy, §dummy, /* state parameters not used */
skey, /* the key that was pressed */

I &dummy) ; /* clicks return not used */

if (which & MU_KEYBD)
{ /* deal with the keystroke */

I }

7 AES-48 Section 4 — Event library

4.7 Set Double Click Delay evnt_dclick

Set Double Click Delay is used to set or discover the length of time during
which GEM waits after a mouse button click to count extra clicks and so allow
applications to determine if there has been a double click. See also the
description of evnt button in section 4.2.

4.7.1 Definition
The Prospero C definition of Set Double Click Delay is :

WORD evnt dclick (WORD rate, WORD setit);

4.7.2 Purpose

This function may be used to select one of five possible time delays for
detecting double clicks, or to return the current setting. Experienced users
tend to prefer faster double click speeds (i.e. shorter delays), as they are used
to using the mouse, and tend to make single clicks more quickly, which might
be mistaken for double clicks if a longer delay was set. Less experienced users
find it hard to click fast enough if the double click delay is too short. This
function might be used to allow the user to select a double click delay, perhaps
in a control panel type desk accessory, or a particularly user-friendly
application.

l

l 7 Section 4 — Event library AES-49

4.7.3 Parameters

Parameter Type of Parameter description
name parameter Function of parameter
rate WORD New double click delay

A value in the range 0 to 4, where 0 corresponds
to a long delay (slow double clicks recognised)
and 4 to a short delay (only fast double clicks
recognised).

setit WORD Set or inquire flag

If the value of this parameter is one, the new
double click speed will be set to the value in the
parameter rate. Otherwise, the value of rate
is ignored. This would be used if the application
wanted to discover the double click speed
without altering it.

4.7.4 Function Result

The value returned will be the current setting of the double click speed, using
the same values as for the parameter rate. If setit was one, the value
returned will be the newly set rate, otherwise it will be the old (and still
current) rate.

4.7.5 Example

if (evnt _dclick(l, 0) == 4) /* Get current rate */
evnt_dclick (3, 1); /* Allow any rate but 4 */

7 AES-50 Section 5 — Menu library

5 MENU LIBRARY

This section contains descriptions of the Menu Library functions, in the
following sub-sections.

Section Function description Binding name

5.1 Display Menu Bar menu_bar

52 Check Menu Item menu_icheck
5.3 Enable Menu Item menu_ienable
54 Menu Title Display menu_tnormal
5.5 Alter Menu Text menu_text

5.6 Register Accessory menu_register
5.7 Unregister Accessory menu_unregister
5.8 Create Menu Bar menu_create
59 Add Menu Title menu_title
5.10 Add Menu Item menu_item

The routines in the Menu Library are concerned with controlling the
appearance of the application’s menu bar.

The application is not responsible for interaction between the mouse and the
menu bar — this is performed by the GEM AES screen manager — but it is up to
the application to control which (if any) menu is to be displayed (menu_bar),
and to alter the menu according to context, by for example placing or
removing a tick mark by an item to indicate whether the corresponding option
is selected (menu_1icheck), disabling certain selections when their selection is
not appropriate (menu_ienable), or altering the text of a menu item to
reflect the current conditions (menu_text). The application is also
responsible for restoring the title of a selected menu item to normal video
when the processing of that menu selection is complete (menu_tnormal).

l

l y Section 5 — Menu library AES-51

The menu bar is stored in the form of an object tree, as described in section 6.
By convention, this is the first object tree in an application’s resource file, and
the pointer to it can therefore be obtained by giving rsid a value of zero when
calling rsrc_gaddr (section 12.3). If an application does not want to use a
resource file, a menu tree can be created dynamically using the
menu_create, menu_title and menu_item functions described in
sections 5.8 onwards. These functions do not form part of the original bindings
provided by Digital Research, and do not make any calls to the GEM AES, but
are provided by Prospero Software to assist in the creation of menu bars,
which is otherwise somewhat complicated.

The functions menu_register and menu_unregister are for use by desk
accessories, to control the name or names which appear in the accessory menu
for that accessory application.

7 AES-52 Section 5 — Menu library

5.1 Display Menu Bar menu_bar

Display Menu Bar makes GEM AES enable and draw the menu bar at the top
of the screen, or disable the menu bar.

5.1.1 Definition
The Prospero C definition of Display Menu Bar is :

WORD menu_ bar (OBJECT *tree, WORD showit) ;

5.1.2 Purpose

This function is used to tell GEM AES whether the menu bar is to be displayed
or not, and whether the mouse is to interact with the menu bar to produce drop
down menus. The pointer to the tree data structure containing the menu bar is
passed in the parameter t ree — this will normally have been obtained from
rsrc_gaddr (section 12.3) after loading the resource file, or using
menu_create (section 5.8) if a resource file is not used. Refer to section 6
for a full description of object trees and the OBJECT type. It is possible to
select which menu to use (if there is more than one available) by using this
function to make a particular menu bar active. If the application requests that
the menu bar be made active, by making showit non-zero, GEM AES will
draw the menu bar at the top of the screen. However if showit is zero, the
menu bar will not be explicitly erased, but simply made inactive, and not
redrawn should it become obscured. Normally the menu will only be removed
when an application is about to terminate.

5.1.3 Parameters

Parameter Type of Parameter description
name parameter Function of parameter
tree OBJECT * Object tree containing menu

The tree pointer of the object tree containing the
menu to be enabled (and displayed) or disabled.
This will normally be obtained using
rsrc_gaddr (section 12.3) or menu_create
(section 5.8).

l 7 Section 5 — Menu library AES-53
showit WORD Enable or disable flag

If this parameter is one, the specified menu
l bar will be made active, and drawn at the top

of the screen. If it is zero, the menu will be

disabled, so that the mouse no longer interacts
l with the menu when an evnt_mesag (section

44) or evnt _multi (section 4.6) call is

made, and the menu bar is not redrawn when
I the screen is refreshed.

5.1.4 Function Result

' The value returned will be zero if an error occurred, or greater than zero if
no error was detected.

5.1.5 Example

#define TheMenu 1 /* Sample index in resource file,
l returned by resource editor */

OBJECT *MyMenu;

I main ()

{

/* Initialize application, load resource file */

/* Get pointer to menu bar */
rsrc_gaddr (0, TheMenu, &MyMenu) ;

I /* Display and enable menu bar */
menu_bar (MyMenu, 1);

/* Disable menu before terminating */
I menu_bar (MyMenu, 0);

rsrc_free();

appl_exit ();

7 AES-54 Section 5 — Menu library
5.2 Check Menu Item menu_icheck

Check Menu Item is used to control whether a menu item is displayed with or
without a check mark at the left hand end — this can be used by an application to
indicate whether an option is currently in force, for example. In GEM version
1.1, the check mark is a tick, while in GEM version 2.0 an arrowhead is used.

5.2.1 Definition
The Prospero C definition of Check Menu Item is :

WORD menu_icheck (OBJECT *tree,
WORD itemnum, WORD checkit) ;

5.2.2 Purpose

This function is used to tell GEM AES whether the specified menu item is to be
displayed checked or unchecked (with or without a check mark). If the menu
item is displayed at the time, it will be redrawn in the new state. The pointer to
the tree containing the menu bar is passed in the parameter t ree — usually
obtained from rsrc_gaddr (section 12.3) after loading the resource file, or
menu_create (section 5.8) if a resource file is not being used. The object
index within the tree of the item to be checked or unchecked is passed in the
parameter itemnumn; this is provided as a macro in the include file produced
by the resource editor, or returned by menu_item (section 5.10) if a resource
file is not being used.

5.2.3 Parameters

Parameter Type of Parameter description
name parameter Function of parameter
tree OBJECT * Object tree containing menu

The tree pointer of the object tree containing the
menu concerned. This will normally be
obtained using rsrc_gaddr (section 12.3) or
menu_create (section 5.8).

AES-55

l 7 Section 5 — Menu library
itemnum WORD

l checkit WORD

5.2.4 Function Result

Menu item index

This parameter gives the index within the menu
tree array (see section 6) of the item to be
checked or unchecked. It will normally be a
macro provided by the resource editor in an
include file, or the result returned by a call to
menu_item (section 5.10).

Item check flag

If this parameter is one, the specified menu item
will be displayed with a check mark beside it. If
zero, the item is displayed without a check
mark. It is not an error to request a check mark
on an item which is already checked.

l The value returned will be zero if an error occurred, or greater than zero if no

error was detected.

I 5.2.5 Example

#define ifast 13 /* Sample index in menu tree of

OBJECT *MyMenu;

menu item ' Fast Mode' from
resource editor */

I WORD FastMode; /* My record of mode */

I /* Make menu indicate what mode we are in */

menu_icheck (MyMenu,

ifast, FastMode) ;

/ AES-56 Section 5 — Menu library
5.3 Enable Menu Item menu_ienable

Enable Menu Item makes GEM AES enable or disable a specified item or title
in the menu bar. Disabled items are displayed in light text, and cannot be
selected using the mouse.

5.3.1 Definition
The Prospero C definition of Enable Menu Item is :

WORD menu_ienable (OBJECT *tree,
WORD itemnum, WORD enableit):;

5.3.2 Purpose

This function is used to tell GEM AES whether the specified menu item is
enabled or disabled. Normally an application will disable any items which are
not relevant at the current state of the application; such items are displayed in
light text, and do not interact with the mouse when it passes over them. In
GEM version 2.0, menu titles can be enabled or disabled as well as menu items.
The effect of a call to menu_ienable specifying the index of a title rather
than an item is not documented in GEM version 1.1.

5.3.3 Parameters

Parameter Type of Parameter description
name parameter Function of parameter
tree OBJECT * Object tree containing menu

The tree pointer of the object tree containing the
menu concerned. This will normally be
obtained using rsrc_gaddr (section 12.3) or
menu_create (section 5.8).

|

I 4 Section 5 — Menu library

AES-57

itemnum WORD

enableit WORD

5.3.4 Function Result

Menu item index

The index within the menu tree of the item to be
enabled or disabled. This will normally be given
by a macro from the include file created by the
resource editor when the resource file was
created. In GEM version 2.0, menu titles may
be specified — in this case the high order bit of
the title index specified should be set. The
simplest way to do this is by passing a value of
(title_index | 0x8000).

Enable or disable flag

If this parameter is one, the specified menu item
will be enabled, and drawn in normal type. If it
is zero, the menu item will be displayed in gray,
and disabled, so that the item or title can not be
selected using the mouse.

l The value returned will be zero if an error occurred, or greater than zero if no

error was detected.

l 5.3.5 Example

#define saveitem 5

OBJECT *my_menu;
[WORD alteredflag;

/* Sample index of menu item

' Save' in header file from
resource editor */

/* Only allow user to save if work altered */
menu_ienable (my menu, saveitem, alteredflagq);

7 AES-58 Section 5 — Menu library

54 Menu Title Display menu_tnormal

Menu Title Display makes GEM AES display a menu title in either normal or
reverse video. This is conventionally used in GEM applications to indicate
when a selection from a particular menu title’s list is being processed.

5.4.1 Definition
The Prospero C definition of Menu Title Display is :

WORD menu_tnormal (OBJECT *tree,
WORD titlenum, WORD normalit) ;

'5.4.2 Purpose

This function is used to tell GEM AES whether the specified menu title is to be
displayed in normal or reverse video. This gives an indication to the user about
what the application is doing. By convention, when an application is waiting
for menu input, all menu items will be displayed in normal video. When a
menu item is selected with the mouse, GEM AES sends a message to the
application indicating which menu item and title were selected (see
evnt_mesag and evnt_multi in section 4). The title of the selected menu
item will be left in reverse video state by GEM AES, and it is up to the
application to reset it to normal at some stage before waiting for another menu
selection. The normal approach is to reset the title immediately prior to the
next evnt mesagor evnt multi call, so that it remains highlighted all the
time the menu selection is being processed, and the user can tell that the
application is busy.

If an application makes some menu choices available by typing keys at the
keyboard as well as by selecting them with a mouse, it is a good idea to
highlight the relevant menu title when the key press is detected, to indicate that
the selection has been made. This will not be done automatically be GEM AES,
so the application should call menu tnormal with a value of zero in the
parameter normalit when the keystroke is detected.

l 7/ Section 5 — Menu library

AES-59

5.4.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

tree OBJECT *

titlenum WORD

normalit WORD

5.4.4 Function Result

Object tree containing menu

The tree pointer of the object tree containing the
menu concerned. This will normally be
obtained using rsrc_gaddr (section 12.3) or
menu_create (section 5.8).

Menu title index

The index within the menu tree of the title to be
displayed highlighted or normal. The title of the
menu item selected is given in pbuff [3]
when a menu selection message is returned by
evnt_mesag or evnt_multi — this title
should always be returned to normal text before
awaiting further message events.

Normal or highlighted flag

If this parameter is one, the specified menu title
will be displayed in normal text. If zero, the title
will be highlighted by drawing it in reverse
video.

The value returned will be zero if an error occurred, or greater than zero if no

error was detected.

7 AES-60

Section 5 — Menu library

5.4.5 Example

#define

#define
#define
#define

MN_ SELECTED 10 /* From AESBIND.H */

newitem 3
saveitem 4
quititem 5

/* Sample constants from resource editor */

OBJECT *MyMenu;
WORD MyBuffer([8];

do |

/* Wait for message events */
evnt mesag (MyBuffer);

1iE
{

}

(MyBuffer[0] == MN_SELECTED)

/* Menu item selected */
switch (MyBuffer([4]) /* Which item selected */
{ case saveitem:

case newitem:
} /*switch*/

/* Now reset title to normal */
menu_tnormal (MyMenu, MyBuffer([3], 1)
/*IF MN_SELECTED */

} while (MyBuffer[4] != quititem);

i y Section 5 — Menu library AES-61
5.5 Alter Menu Text menu_text

Alter Menu Text is used to alter the text of a menu item. This is frequently used
I by applications to give context-sensitive menus, so that a menu item might read

‘ Enable option’ when an option was disabled and * Disable option’ when it was

enabled. In this way the text of the menu item also indicates the current state of
i the option.

5.5.1 Definition

l The Prospero C definition of Alter Menu Text is :

WORD menu_text (OBJECT *tree
WORD inum, const char *ptext);

o —

5.5.2 Purpose

I This function is used to alter the text of the specified menu item. The
application should ensure that the new text is no longer than the original text or
GEM is liable to crash. Menu items of more than about 20 characters are
I unlikely to be useful, especially as a menu is not permitted to occupy more than

a quarter of the screen area.

I This function does not cause the menu to be redrawn, so if there is any
possibility of the specified menu item being currently displayed (this is only
possible if using evnt _multi, with message events and some other event type

I enabled, where the other event has caused a return from evnt_multi while a
menu was being held down), the application can call menu_bar (section 5.1)
to redraw the menu.

I 5.5.3 Parameters
Parameter Type of Parameter description
l name parameter Function of parameter
tree OBJECT * Object tree containing menu
! The tree pointer of the object tree containing the

menu concerned. This will normally be
obtained using rsrc_gaddr (section 12.3) or
[menu_create (section 5.8).

7 AES-62 Section 5 — Menu library
inum WORD Menu item index

The index within the menu tree of the menu
item whose text is to be altered. This will
normally be a macro from the include file
generated by the resource editor when the
resource file was created.

ptext const char * New menu text

The new text of the menu item. This must be no
longer than the original text when the menu was
created, and terminated by a null character.

5.5.4 Function Result

The value returned will be zero if an error occurred, or greater than zero if no
error was detected.

5.5.5 Example

#define optitem 20
/* Sample constant from resource editor */

OBJECT *MyMenu;
WORD OptionOn;

if (OptionOn)

menu_text (MyMenu, optitem, " Disable option");
else

menu_text (MyMenu, optitem, " Enable option ");

I 7 section 5 — Menu library AES-63

5.6 Register Accessory menu_register

Register Accessory is used by a desk accessory to add a name to the list of
accessories on the desk menu.

5.6.1 Definition

The Prospero C definition of Register Accessory is :

WORD menu_register (WORD pid, const char *pstr);

5.6.2 Purpose

This function is used to add the name of a desk accessory to the list of available
accessories in the Desk menu at the end of the menu bar. In GEM version 1.1,
this menu conventionally has the title Desk, and is at the left hand corner of the
screen. In GEM version 2.0 the title is altered by GEM AES to the name of the
currently running application, and placed on the right hand end of the menu
bar, but this does not affect the application.

The desk accessory must give its application global identifier (returned by
appl init - see section 3.2) in the parameter pid — this indicates where
messages will be sent when the accessory’s menu item is selected. The text to be
added to the desk menu must also be given. Note that one desk accessory file
may contain more than one desk accessory — in this case it will make several
calls to menu_register to add the name of each accessory before waiting
for a message. The function result returns the menu item identifier of the
accessory slot allocated, which will enable the 2 cessory file to discover which
menu item was selected when it receives a message, and therefore decide what
function to perform. If a desk accessory program only adds one item to the
desk menu, the menu item identifier will not be necessary as all menu selection
messages must refer to that item. However, it is prudent to check that the value
returned was not —1, which is used to indicate that the desk menu is full — if this
occurs there is no point in an accessory waiting for a message, and it may as
well terminate.

7 AES-64

Section 5 — Menu library

5.6.3 Parameters

Parameter Type of

Parameter description

name parameter Function of parameter

pid WORD Accessory global identifier
The application global identifier of the desk
accessory process, as returned by appl _init
at the start of the desk accessory program.

pstr const char * Desk menu entry

5.6.4 Function Result

The text which the accessory wishes to place in
the desk menu describing the accessory function
it offers. GEM AES remembers the address of
this text rather than its contents, so it must not
be modified after being passed to this function.
(a string literal is particularly suitable).

The value returned will be —1 if the desk menu is full, otherwise a value in the
range 0 to 5 (this value is likely to increase in subsequent issues of GEM)
indicating which menu slot was allocated to the identifier. This is the value
returned in pbuff[3] when an AC_OPEN message is received by
evnt_mesag (see section 4.4) or evnt _multi (section 4.6) indicating an
accessory has been opened, and may be used to tell which accessory has been
requested if more than one item has been added to the desk menu.

l 7 Section 5 — Menu library AES-65
5.6.5 Example

WORD ap_id, calc_id, clock_id;
’ WORD my buffer([8];
calc_id = menu_register(ap_id, " Calculator”);
{ clock_id = menu_register(ap_id, " Clock");
if (calc_id == -1) exit(3); /* No room for either */
do {
l evnt _mesag (my buffer);
switch (my buffer[0])
{ case AC_OPEN: if (my buffer([3] == calc_id)
{ /* Do calculator */ }
l else
{ /* Do clock*/ }
break;
’ case AC_CLOSE:
}
} while (1); /* No need to terminate */

/ AES-66 Section 5 — Menu library
5.7 Unregister Accessory menu_unregister

Unregister Accessory is used by a desk accessory to remove a name from the
list of accessories on the desk menu. This function is not available in GEM
version 1.1.

5.7.1 Definition

The Prospero C definition of Unregister Accessory is :

WORD menu_unregister (WORD mid) ;

5.7.2 Purpose

This function is used to remove the name of a desk accessory from the list of
available accessories in the Desk menu at the end of the menu bar. It should
only be used by desk accessories, and is not available in GEM version 1.1. The
menu item identifier of the name to be removed must be specified; this is the
value returned by menu_register when the name was added to the desk
menu. A value of -1 can be used to indicate the desk accessory name belonging
to the currently running process. The effect of this when a process has added
more than one name is not documented.

5.7.3 Parameters

Parameter Type of Parameter description
name parameter Function of parameter
mid WORD Menu item identifier

The menu item identifier of the name to be
removed, as returned by menu_register. A
value of -1 may be used to indicate the name
belonging to the current process, when only a
single name has been added.

[7 Section 5 — Menu library AES-67

5.7.4 Function Result

The value returned will be zero if an error occurred, or greater than zero if no
error was detected.

5.7.5 Example

WORD ap_id, calc_id, clock_id;

calc_id = menu_register(ap_id, " Calculator");
clock_id = menu_register(ap id, " Clock");

menu_unregister(clock _id); /* Remove clock from menu */

7 AES-68 Section 5 — Menu library
5.8 Create Menu Bar menu_create

Create Menu Bar is used to create a menu bar at run time rather than loading
one from a resource file. The use of a resource file is recommended for
several reasons — it will result in smaller applications, and ones which are
easily translated to foreign languages. However, where these considerations
are outweighed by the desire to have the application self contained in a single
file, or for simple applications, the use of this function may be preferable.

This function does not form part of the original bindings provided by Digital
Research.

5.8.1 Definition

The Prospero C definition of Create Menu Bar is :

OBJECT *menu_create(WORD titles, WORD items,
const char *about);

5.8.2 Purpose

This function is used to allocate space for a menu object tree, and set up the
objects within the tree so that they constitute a valid menu bar. The Desk menu
title, whose index is always 3, and must be present on all menu bars, is created
by this function, and the text for the single user-defined item on this menu must
be supplied in the parameter about. This usually takes the form ¢ About
programname ..., and when selected should result in a dialog giving details of
the program, such as the version number and copyright message. The
remainder of this menu is reserved for desk accessories.

The menu bar can be used immediately after creating it, though there would
only be one title with one item to be selected (apart from the desk accessories).
Alternatively, further titles and menu items can be added to the tree using
menu_title (section 5.9) and menu_item (section 5.10). The application
must specify how many titles and items are to be added to the tree in this way,
so that sufficient space is allocated for the tree. The value in the parameter
titles need not include the Desk title, and the value in the parameter items
need not include the items associated with the Desk title, but the values should
take account of all titles and items added using menu_title and menu item.

I y Section 5 — Menu library

AES-69

5.8.3 Parameters

I Parameter Type of
name parameter

Parameter description
Function of parameter

titles WORD

’ items WORD

about const char *

5.8.4 Function Result

Number of titles to be added

The number of titles to be added to the menu.
The application should add 1 for each title added
using menu_title (section 5.9). There is no
need to allow for the Desk title, but it is a good
idea during program development to add a bit
extra for menus which will be added later.

Number of items to be added

The number of items to be added to the tree.
The applicalion should add 1 for each item
added using menu_item (section 5.10). There
is no need to allow for the Desk items, but it is a
good idea during program development to add a
bit extra for menus which will be added later.

About menu item text

The text of the ‘About...” menu item — the first
item on the Desk menu above the desk
accessories.

l The function returns a pointer to the newly created tree, which can then be
passed to menu_bar or any of the other routines in this section (though
normally an application will add some additional titles and items before using

} the menu).

5.8.5 Example

I OBJECT *MyMenu;

WORD File title, Play title;
WORD Quit item, Go_item, Stop_item;

, MyMenu = menu create(2, 3, " About Myprog");

File title = Henu_title(MyMenu, " File ");
Play title = menu title(MyMenu, " Play ");

’ Quit:item = menu_?tem(MyMenu, File title, " Quit ");
Go item = menu_item(MyMenu, Play title, " Go ");
Stop_item = menu_item (MyMenu, Play title, " Stop ")

l /* The menu is now ready for use */

7 AES-70 Section 5 — Menu library
5.9 Add Menu Title menu_title

Add Menu Title is used to add a title to a menu created using menu_create
(section 5.8). The Desk menu is added automatically by menu_create, as it is
required on all menus; other menu titles must be added by the application.
Titles should be added in the order in which they are to appear from left to
right.

This function does not form part of the original bindings provided by Digital
Research.

5.9.1 Definition
The Prospero C definition of Add Menu Title is :

WORD menu_title (OBJECT *menu, const char *title);

5.9.2 Purpose

This function is used to add a title to a menu bar created using menu_create
(secticn 5.8). All titles should be added before any items are added using
menu_item (section 5.10). It is a good idea to put a space at each end of the
title string — this will separate the titles on the menu bar, and cause the drop-
down box for the title to appear slightly indented from the title.

l

I 7/ Section 5 — Menu library

AES-71

5.9.3 Parameters

Parameter Type of Parameter description
[name parameter Function of parameter
menu OBJECT * Object tree containing menu

title const char *

I 5.9.4 Function Result

The tree pointer of the object tree containing the
menu, as returned by menu_create (section
5.8).

New menu title

A pointer to a null terminated string giving the
text of the new menu title. This should begin and
end with a space. It is a good idea to keep the
total length of all titles below 32 characters
where possible, otherwise the menu will not fit
on a 40 character display.

The function returns the index of the title which was added. This is the value

l which will be returned in pbuff (3] when a message of type
MN_SELECTED is received via evnt_mesag (section 4.4) or evnt_multi
(section 4.6), indicating that an item from that menu has been selected.

5.9.5 Example
l See section 5.8.5.

7 AES-T2 Section 5 — Menu library
5.10 Add Menu Item menu_item

Add Menu Item is used to add an item to a menu created using menu_create
(section 5.8). The * About ..." item on the Desk menu is added automatically by
menu_create, as it is required on all menus; other menu items must be added
by the application. All menu titles must be added using menu_title (section
5.9) before any items are added, and all items must be added to each title, in the
order that the titles were added, before adding items to the next title.

This function does not form part of the original bindings provided by Digital
Research.

5.10.1 Definition
The Prospero C definition of Add Menu Item is :

WORD menu_item(OBJECT *menu, WORD title,
const char *item);

5.10.2 Purpose

This function is used to add a menu item to the specified title in a menu created
using menu_create (section 5.8). The items are added after all titles are in
place, and must be added in the same order as the titles. Failure to observe this
rule will result in the values returned by previous calls of menu_item no
longer being valid. Menus are filled from the top downwards.

The width of each drop-down menu is automatically determined by the longest
item added — this item should therefore have a space at the end (unless it is a
dividing line), but shorter items need not. Menu items other than dividing lines
should begin with one or two spaces. Dividing lines used to separate groups of
items in a single menu are made by adding an item whose text is a row of
hyphens of suitable length, then disabling the item by a call of menu_ienable
(section 5.3). If the text of an item is to be altered later using menu_text
(section 5.5), the length of the text in the parameter item should be sufficient
to cover any text which will be used, to ensure that enough memory is
allocated. The text can be given trailing spaces if required.

Note that in theory up to 24 items can be added to a single menu title, but care
must be taken that the area occupied by a menu does not exceed a quarter of the
display, or GEM will behave unpredictably, and probably crash.

|

AES-73

I / Section 5 — Menu library

5.10.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

menu OBJECT *

title WORD

item const char *

5.10.4 Function Result

Object tree containing menu

The tree pointer of the object tree containing the
menu, as returned by menu_create (section
5.8).

Menu title index

The index within the menu tree of the title to
which this item is to be added, as returned by
menu_title (section 5.9).

Menu item text

A pointer to a null terminated string giving the
text of the new menu item.

The function returns the index of the item which was added. This is the value
which will be returned in pbuff[4] when a message of type
MN_SELECTED is received via evnt _mesag (section 4.4) or evnt_multi
(section 4.6), indicating that the item has been selected. The menu index can
aiso be passed to the functions menu_ienable, menu_ text,menu_icheck

etc.

5.10.5 Example

See section 5.8.5.

7 AES-74

Section 6 — Object library

6

OBJECT LIBRARY

This section contains descriptions of the Object Library functions, in the
following sub-sections.

Section
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14

6.15

6.16
6.17
6.18

Function description
Add Object to Tree
Delete Object from Tree
Draw Objects in Tree
Find Object under Point

Calculate Object Offset

Alter Object Order

Edit Text Object
Change Object State
Return Object State
Set Object State
Return Object Flags
Set Object Flags
Return Object Text

Set Object Text

Read or Write Object Header

Create Object Tree

Insert Item into Object Tree

Initialize Editable Text Object

Binding name
objc_add
objc_delete
objc_draw
objc_find
objc_offset
objc order
objc_edit
objc_change
objc_state
objc_newstate
objc_flags
objc_newflags
objc text
objc_newtext

objc_read
objc write

objc_create
objc_item

objc_tedinfo

|

l Z Section 6 Obiject library AES-75

Note that the functions from objc_state onwards do not form part of the
original Digital Research bindings, but are provided in the Prospero C
bindings to manipulate the object library data structures which are otherwise
slightly awkward.

The word “object” is a term used in GEM AES to mean any of a number of
different kinds of graphic images that can appear on the screen. These are
described in detail later on, but include various types of boxes, text strings,
icons, and combinations of the above. The purpose of the object library is to
divide any screen that the programmer wants to see into objects that GEM AES
can draw and react to. The objects are organized into a data structure known as
an object tree, which allows various objects in the tree to relate to other objects
in a specific manner. Although the idea of object trees may appear quite
complex at first, it does provide both the programmer and GEM AES with an
organized and effective way of dealing with a screen that may contain a
hundred different ‘things’.

The Object Tree

It is important to understand the object tree data structure before full use can
be made of the facilities in the object and form libraries. This data structure is
used in GEM AES to describe dialog boxes, menus, forms, and even the
desktop background, and may be used by an application to describe complex
structures of boxes, text and so on that the application might want to place in a
window.

In order to economize on the memory required for pointers, object trees are
stored in arrays, so that each link connecting an object to the next object in the
tree need only be an array index (taking one word of storage) rather than a
pointer to a memory address (requiring two words). The tree is referred to by
means of the address of the start of the array — this is held in a variable of type
OBJECT *. Normally the address will be returned by rsrc_gaddr (section
12.2) or objc_create (section 6.16). Each element of the array is of type
OBJECT - there may be up to 32767 elements in a single tree, though as each
requires 24 bytes of storage, such a large tree would not fit on many machines.
A more normal size of tree would be anything from 10 to 50 objects — for
example a tree which contains a menu has 2 objects per title, plus one object
per menu item, plus about 5 objects overhead. The array index of a particular
element in the array containing a tree is known as the object index, and is of
type WORD. The header of an object whose object index is obj can thus be
referenced as tree [obj].

7 AES-76 Section 6 — Object library
The relevant type definitions from the AESBIND.H file are as follows:

typedef struct
{ WORD ob next, ob head, ob tail,
ob type, ob flags, ob_state;

union
{ void * pte: /* Can point to various types */
unsigned long color; /* or give color info */

} ob_spec;
WORD ob x, ob_y, ob width, ob_height;
} OBJECT;

The object header describes the type of each object in the array, and contains
the links describing the next object and any children that the object may have.
The object tree is organized in a somewhat unconventional manner, as
illustrated in the diagram below. Basically, each object in the tree contains in
its header structure three links, giving the object indices of the next object, the
first child object and the last child object respectively. A value of —1 in any of
these fields indicates that there is no child or next object; however, as the last
child of any object always uses the ob_next field to hold the object index of
its parent, only one object in a tree will have a value of -1 in the ob_next
field — this is the last object at the root level. Most if not all object trees have a
single root object, which is always the object whose index is zero. The other
fields in the object header describe what the object is and how it is displayed,
and are described later.

\A

ob_next' > < i &
ob_head| -1 -1 -1 -1 =1
ob taill =1 -1 -1 -1 =1

Figure 6.1 Object Tree Structure

|

l / Section 6 — Object library AES-77

The type OBJECT * is the type that appears in the parameter lists of the
bindings, and the only one of these types that a simple application (or even
quite a complicated one) is likely to use. If all form interaction is performed
using the function form do (see section 7.1), and the functions described in
this section are sufficient to perform all the setting up of a form and reading of
results from a form that the application requires, and all forms are created by a
resource editor, then the application will never have cause to access an object
header directly.

Each object in the tree is described by its object header structure. As well as the
links described above, the structure contains a number of information fields as
follows:

ob_type A two-byte integer describing what sort of object this header is
describing. As there are only 13 object types, only the low order
byte of this value is used by GEM AES.

ob_flags A bitmap containing a number of flags describing how the object
is to behave in a form — these flags are set up when the object is
created, and normally are not changed subsequently, as to do so
would change the function of the form.

ob state A bitmap containing a number of flags describing how the object
is to be displayed. These flags will change as a user interacts with
a form to reflect the changes in a form’s appearance (such as
highlighting selected objects, and so on).

ob_spec This is a long (4-byte) value, which contains either a pointer to a
structure containing further information, or information about
the object’s color and border, depending upon the type of the
object as specified by the ob_type field.

ob_x,0b y,ob width,ob height
The coordinates and size of the object, in pixels. All coordinates
are relative to the x and y coordinates of the object’s parent (or to
the screen for the root object). In a properly constructed tree, all
objects must lie completely within the rectangle of their parent
object.

7 AES-T8 Section 6 — Object library
OB_TYPE Values

The values of the ob_type field and the associated object types are as follows:
Value and Name Type of Object

20 G_BOX A box — the ob_spec field describes the color of the
box and its border characteristics.

21 G_TEXT A text item — the ob_spec field contains a pointer to an
object of type TEDINFO.

22 G_BOXTEXT A box containing a text item — the ob_spec field
contains a pointer to an object of type TEDINFO.

23 G_IMAGE A bit image picture — the ob_spec field contains a
pointer to an object of type BITBLK.

24 G_PROGDEF A programmer defined object — the ob_spec field
contains a pointer to an object of type APPLBLK.

25 G_IBOX An unfilled box — the ob_spec field describes the
border thickness and color. If the border thickness is
zero, it is invisible, but may be useful as a parent to
group other objects, for example a set of radio buttons.

26 G _BUTTON A text string displayed in the centre of a box, normally
used for buttons — the ob_spec field contains a pointer
to a null-terminated string.

27 G_BOXCHAR A box containing a single character, displayed in the
system font — the ob_spec field describes the box color
and border characteristics.

28 G_STRING A text string in the system font — the ob_spec field
contains a pointer to a null-terminated string.

29 G_FTEXT Formatted text — the ob_spec field contains a pointer
to an object of type TEDINFO.

30 G_FBOXTEXT A box containing formatted text — the ob_spec field
contains a pointer to an object of type TEDINFO.

31 G_ICON An icon — the ob_spec field contains a pointer to an
object of type ICONBLK.
32 G_TITLE A text string used for menu titles, otherwise identical to

G_STRING.

I / Section 6 — Object library , AES-79

OB _FLAGS Values

The ob_flags field in the header describes how the object behaves in a form,
such as whether the object may be selected with the mouse or keyboard, and
whether its selection indicates that the form processing is over. The
ob_flags field will normally be set up when the tree is created, either in a
resource file or by an application, and subsequently not altered, but referenced
by any form handling routine. Each bit in the value corresponds to one object
attribute, and may be referenced using combinations of the constants listed
below (which are declared in the file AESBIND.H):

Value Name Function
0x0000 NONE No attributes selected.

0x0001 SELECTABLE The object may be selected with the mouse. Such an
object will be displayed highlighted by form_do
(see section 7.1) when the user clicks on it.
Selectable buttons are drawn with a thicker border.

0x0002 DEFAULT The object is to be selected when the user presses
return or enter. Only one object in a tree may have
this attribute set. A default button will normally
have the exit flag set too, and is displayed with a
blackened outline.

0x0004 EXIT When the user selects an object with the exit
attribute set, it indicates that interaction with the
form is complete. The object should also be
selectable. A form may have several objects with
the exit attribute set.

0x0008 EDITABLE The object may be edited by the user. Only objects
of type G_FTEXT or G_FBOXTEXT can be
edited. The user can select which editable text
object is currently being edited using the tab,
backtab, up arrow and down arrow keys.

7 AES-80

Section 6 — Object library

0x0010

0x0020

0x0040

0x0080

0x0100

RBUTTON

LASTOB

TOUCHEXIT

HIDETREE

INDIRECT

The object is a radio button. When an object with
this attribute set is selected, all its siblings (children
of the same parent) with the RBUTTON attribute
set will have their SELECTED bit in the
ob_state field cleared (see below). Thus the
operation is like the waveband selector on an old
radio, where pressing one button in causes the
others to pop out. Objects of type G _IBOX are
useful as parents of sets of radio buttons.

Indicates that the object is the last object in the tree
(in other words it has the highest object index).
This flag bit is used by GEM AES when for
example determining whether there is another
editable text field to move to when the user types
the tab key.

When the user clicks on an object with this attribute
set, it indicates that interaction with the form is
complete. Note that this is not quite the same as the
EXIT attribute — if the user clicks on an EXIT
object, form_do will not return until the mouse
button is released, and if the mouse is moved
outside the object before the button is released, the
object will not be selected and form_do will not
return. A TOUCHEXIT object will cause
form_do to return as soon as the user presses the
mouse button. The object need not be a button —
some forms which simply provide information
have the TOUCHEXIT bit set on all objects, so that
as soon as the mouse is pressed anywhere in the
form, form_do returns.

An object with this attribute set will not be drawn
by the objc_draw function, or found by the
objc_find function, or play any part in the form
interaction, nor will any of its children. This is
useful for concealing part of a form that is not
relevant at a particular time.

If this attribute is set, it indicates that the value in
the ob_spec field is a pointer to the value
described above, rather than containing the value
itself.

|

I 7 Section 6 — Obiject library

AES-81

OB_STATE Values

The ob_state field in the header describes the current state of the object as a
result of interaction with a form by the user, and controls how the object is
displayed. Each bit in the value indicates whether a certain state is in force. The
values may be referenced using combinations of the constants listed below
(which are declared in the file AESBIND.H):

Value
0x0000

0x0001

0x0002

0x0004

0x0008

0x0010

0x0020

0x0040

0x0080

Name
NORMAL

SELECTED

CROSSED

CHECKED

DISABLED

OUTLINED

SHADOWED

DRAW3D

WHITEBAK

Function
No object state bits selected.

The object is selected, and is displayed highlighted.
The application might for example set this bit on
buttons representing options currently in force,
then call form_do to allow the user to alter the
settings by selecting other objects or clicking
selected objects to deselect them. The application
would test this bit on all relevant objects when
form_do returns, to see what the options the user
chose.

The object is drawn with a cross through it. This
could be used to indicate selection using a ‘check
box’.

The object is drawn checked — with a tick mark or
other selector beside it.

The text of the object is drawn in gray, indicating
to the user that this is not available. The
SELECTABLE bit in the ob_flags field could
also be reset to disallow selection of the object.

Under GEM version 1.1, the object is drawn with
its bounding rectangle outlined. Under GEM
version 2.0 the object is drawn with a drop shadow,
as for the SHADOWED state bit below.

The object is drawn with a drop shadow.

This only applies to G_ICON type objects, and
causes the icon mask to be drawn 3 times in a
diagonal line, giving an impression of depth.

This only applies to G_ICON type objects. When
this attribute is set and the background color is
white, the icon’s mask and the rectangle
surrounding its text will not be drawn.

/ AES-82 Section 6 — Object library
OB_SPEC Values

For objects of type G_BOX, G_IBOX and G_BOXCHAR, the ob_spec field
contains an unsigned long integer describing the object’s color and border.
This integer is divided into three portions, describing the color of the various
parts of the box, the thickness of its border, and for G_ BOXCHAR the ASCII
code of the character the box contains. The border thickness is described by the
low order byte of the high order word — this is the second byte in 68000
systems and the third in 8086 systems. A value of zero in the thickness field
indicates no border, a positive value indicates the border is that number of
pixels thick inwards from the object’s rectangle, and a negative value indicates
that the border is that number of pixels outwards from the object’s rectangle.

The character code is contained in the high byte of the high word — this is the
first byte in 68000 systems and the last in 8086 systems. For G BOX and
G_IBOX objects, this byte should contain zero.

The low order word describes the color, and is itself subdivided. The 4 most
significant bits describe the border color in the range 0 to 15, the next 4
describe the text color where appropriate. The next bit selects transparent (0)
or replace (1) mode — see the VDI manual for details; this is followed by 3 bits
selecting the style in which the box is to be filled, in the range 0 to 7. A value of
0 means hollow fill, 7 means solid fill, and intermediate values give dither
patterns of increasing intensity. The color used for these fill patterns is
specified by the remaining four bits. This color word format is also used in the
TEDINFO structure to which the ob_spec value may point, as described
below. Note that objects of type G_IBOX are not filled, and therefore only the
border color is used from this color word. When specifying values for the
color word as four digit hexadecimal constants, the first digit gives the border
color, the second digit the text color, the third digit the writing mode and fill
style, and the last digit the inside color.

I Z Section 6 — Object library AES-83

The TEDINFO structure

For objects of type G_TEXT, G_BOXTEXT, G_FTEXT and G_FBOXTEXT
(known collectively as text objects), the ob_spec field contains a pointer to a
structure of type TEDINFO, defined as follows:

typedef struct
{ char *te ptext, *te ptmplt, *te pvalid;
WORD te font, te resvdl, te just, te_ color,
te resvd2, te_thickness, te txtlen, te_ tmplen;
} TEDINFO;

G_TEXT and G_BOXTEXT objects basically differ from G_STRING and
G_BUTTON objects only in the additional control over the appearance that is
available. For G_STRING and G_BUTTON, the ob_spec field points to the
string, and there is no color or border information — the text is always
displayed in black. The G TEXT and G BOXTEXT objects allow text to be
displayed in any color, by setting the fields of the TEDINFO structure
appropriately. The te ptext field points to the string to be displayed — null
terminated as usual — and the te_tmplt and te_pvalid fields are not used.

G_FTEXT and G_FBOXTEXT objects are known as editable text objects (and
will normally have the EDITABLE bit set in the ob_flags word — see above.
The te_ptext field points to the text that the user may edit — typically an
application would set this field to a default or suggested text, allow the user to
interact with the form using form do as described in section 7.1, then read
the value to see what the user entered. In order to simplify this process, two
additional functions objc_text and objc_newtext are provided in the
Prospero C bindings — see sections 6.13 and 6.14 for further details. The
te ptmplt field provides a template into which the text must be entered —
any character position in this string containing an underscore indicates an
editable position, while other characters are displayed as prompt or separator
information. The maximum lengths of these two strings are given by the
parameters te_txtlen and te tmplen respectively. The te pvalid
string contains one character for every editable position in the template,
indicating what characters may be entered in that position as follows:

Allow only digits 0 to 9

Allow upper case letters and space

Allow upper and lower case letters and space

Allow upper case letters, digits and space

Allow upper and lower case letters, digits and space

Allow all valid filename characters, and query (?), asterisk (*) and
colon ()

Allow all valid path name characters, and backslash (\), query (?),
asterisk (*) and colon (:)

Allow all valid path name characters, and backslash (\) and colon (:)
Allow anything

o oTBZ® %o

bS]

y AES-84 Section 6 — Object library

If a character typed does not match the corresponding character in the
te pvalid string, it will be rejected, unless that character appears
subsequently in the te ptmplt string, in which case the cursor will be moved
to the first editable position after the character, filling the te ptext string
with blanks up to that point. See objc_edit in section 6.7 for information of
how to use editable text objects in forms, though this will normally be done
automatically by using the function form_do (see section 7.1).

The remaining fields govern the way the text is displayed. The te_font field
indicates whether the text is to be displayed in the system font (te_font = 3)
or the small system font (te font = 5). The text can be output left, right or
centre aligned with values of 0, 1, or 2 in the te_just field respectively. The
te color field governs the color and pattern of the box and text in the same
way as the color word in the ob_spec field of G_BOXCHAR items described
above. The thickness of the box is given by te_thickness, with positive
values indicating inside thickness, zero no thickness and negative values outside
thickness, also as described above for the ob_spec value of G_BOXCHAR
objects.

I 7 Section 6 - Obiject library AES-85

The ICONBLK structure

For objects of type G_ICON, the ob_spec field contains a pointer to a
structure of type ICONBLK, defined as follows:

typedef struct
{ WORD *ib pmask, *ib pdata;
char *ib ptext;
WORD ib_char, ib_xchar, ib_ychar,
ib xicon, ib_yicon, ib_wicon, ib_hicon,
ib _xtext, ib_ytext, ib _wtext, ib_htext,
Zero; /* Should be zero */
} ICONBLK;

The ib_pmask and ib_pdata fields are pointers to the bit images
representing the mask and data defining the icon. The bit images are arrays of
WORD, and can be any multiple of 16 pixels wide, and any number of pixels
high.

The ib_ptext field is a pointer to a null-terminated string containing the text
to be displayed beneath the icon.

The ib_char field contains a character to be displayed on the icon — this can
be used for example to give the drive letter on an icon representing a disk
drive. The value is interpreted as an unsigned word, with the top 4 bits giving
the foreground color, the next four the background color, and the low order
byte the character to be displayed. The offset in pixels (relative to the icon
position in ib_xicon and ib_yicon) of the character is given by the fields
ib . xchar and ib _ychar.

The fields ib_xicon and ib _yicon describe the position of the icon,
relative to the object rectangle defined in the object header, while ib_wicon
and ib_hicon give its width and height in pixels. Note that the width must be
divisible by 16.

The fields ib_xtext and ib_ytext describe the position of the icon’s text,
relative to the object rectangle defined in the object header. The text is
displayed centred in a rectangle whose width and height are defined by the
fields ib_wtext and ib_htext.

The field zero serves no purpose, and a value of 0 should be placed there.

7 AES-86 Section 6 — Object library
The BITBLK structure

For objects of type G_IMAGE, the ob_spec field contains a pointer to a
structure of type BITBLK, defined as follows:

typedef struct
{ WORD *bi pdata;
WORD bi wb, bi hl, bi x, bi y, bi color;
} BITBLK;

The bi pdata field is a pointer to the bit image that this object represents.
The bit image can be any number of words wide, and any number of rows
high.

The fields bi_wb and bi_h1 give the width in bytes (this must be even) and
height in lines of the bit image respectively. The x and y offsets of the image
are given by the fieldsbi x andbi y.

The field bi color describes the color to be used to display the bit image.
This should be in the range 0 to 15. A value of —1 may also be specified,
indicating that the image should be blitted in opaque rather than transparent
mode.

|

I 7 Section 6 — Obiject library AES-87

The APPLBLK structure

For objects of type G_PROGDETF, the value in the ob_spec field points to an
object of type APPLBLK, declared as follows:

typedef struct
{ void *ab_code;
long ab_parm;
} APPLBLK;

The ab_code field contains the address of a function which will be called to
draw the object whenever GEM AES draws the tree. This routine may use VDI
calls to draw the structure, but must not make any calls to the AES. GEM AES
will pass the address of a structure of type PARMBLK on the stack — the
structure of this is as follows:

typedef struct

{ OBJECT *pb_tree; /* The tree being drawn i/
WORD pb_obj, /* and the object %4
pb prevstate, /* The object's old state */
pb_currstate, /* .. and new state */
pb_x, pb_y,
pb_w, pb_h, /* Its position and size */
pb_xc, pb_yc,
pb_wc, pb _hc; /* Clipping rectangle %,/
long pb parm; /* Value in ab parm field */
} PARMBLK;

This type is not included in AESBIND.H, as the code to draw the object cannot
be coded in Prospero C (as all registers must be preserved), and is described
above simply for reference. The code must return the value of
pb_currstate in a register.

The ab_parm field contains a value whose meaning may be defined by the
application, which is passed to the application’s code in the pb_parm field
when it is called to draw the object. This might for example be used to
differentiate between several different application defined objects.

7 AES-88 Section 6 — Object library
6.1 Add Object to Tree objc_add

Add Object to Tree is used to establish a parent-child relationship between two
objects in the same object tree array. Note that Prospero C provides the
additional bindings objc_create (section 6.16) and objc_item (section
6.17) to assist in the setting up of object trees.

6.1.1 Definition
The Prospero C definition of Add Object to Tree is :

WORD objc_add(OBJECT *tree, WORD parent, WORD child);

6.1.2 Purpose

This function can be used by an application to add an object to the object tree
specified by the parameter t ree. An object tree is an array of objects of type
OBJECT - this function does not cause an element to be added to the array, but
simply adjusts the ob_next, ob_head and ob_tail fields of the two
specified elements of the array, so that one becomes the child of the other. In
order to add a new item to a tree, a free element of the array must be found.
This might be done by unlinking an existing element from the tree using
objc_delete (section 6.2), or by keeping track of the first free element in
the array using the LASTOB bit in the ob_f1lags field of the last object in the
tree.

Having found a free element, the fields of the OBJECT type structure must be
set up to describe the object being added — see the introduction to section 6 for
further details. When the function is called, the effect is to set the ob_tail
field of the parent, the ob_next field of the child and either the ob next
field of the previous last child of the parent (which now becomes the Iast but
one child), or the ob_head field of the parent if it was childless, so that the
child is incorporated into the tree at the end of the parent’s list of offspring.
The ob_head and ob_tail fields of the child are not altered, so that if the
child was itself the root of a subtree, the entire subtree would be inserted into
the parent tree. This may be used in conjunction with objc_delete (see
section 6.2) to move an entire branch of a tree from one parent to another.

In order to allow dialog boxes to be created with the minimum of fuss,
Prospero C provides some additional bindings to create object trees and add
items to them —see objc_create (section 6.16) and objc_item (section
6.17).

AES-89

l y Section 6 — Object library

]

6.1.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

tree OBJECT *

parent WORD

child WORD

6.1.4 Function Result

Tree to be updated

The pointer to the array containing the tree to
be updated, which contains the parent and child
object headers in the elements tree [parent]
and tree [child] respectively.

Parent object index

The index within the object tree array (referred
to as the object index) of the object which is to
become the parent of the object specified by the
parameter child.

Child object index

The index within the object tree array of the
object which is to become the child of the object
specified by the parameter parent. This object
should not already be linked into the tree.

The value returned will be zero if an error occurred, or greater than zero if no

error was detected.

6.1.5 Example

OBJECT * the tree;

WORD old_objgct , new parent;

/* Move an object and children from one parent to

another */

objc _delete(the tree, old object);

objc_add(the_ tree,

new parent, old object);

Z AES-90 Section 6 — Object library

6.2 Delete Object from Tree objc_delete

Delete Object from Tree is used to remove an object from a tree by unlinking
it from its parent.

6.2.1 Definition
The Prospero C definition of Delete Object from Tree is :

WORD objc delete (OBJECT *tree, WORD delob) ;

6.2.2 Purpose

This function can be used by an application to delete an object from the object
tree specified by the parameter t ree. The object is deleted from the tree
simply by altering the link fields of its parent and/or sibling objects in the tree
— the object header information in the specified array element will not be
altered, nor will the space be returned to the operating system. However the
object will not be included in the effect of any subsequent objc_draw or
objc_find calls, and the array element is in effect available for re-use,
perhaps to set up new values in it before adding it to the tree in a different
position. If an application wishes to move an object’s position in a tree, other
than changes which do not alter its parent but simply its position in the list of
children, then it should be removed from the tree using objc_delete before
placing it in its new position using objc_add (section 6.1). The ob_head and
ob_tail links of the object being removed are not altered, so that if it has any
children they will remain linked to it, and therefore be unlinked from the tree.
In this way an entire branch of the tree can be unlinked from the tree, perhaps
to be moved to a different position in the tree hierarchy.

Note that objects (and their children) can be temporarily excluded from the
effects of objc_hide and objc_draw without removing them from the tree,
by setting the HIDETREE bit in the ob_flags field.

I 7/ Section 6 — Object library

AES-91

6.2.3 Parameters

l Parameter Type of Parameter description
name parameter Function of parameter
tree OBJECT * Tree to be updated
l The pointer to the array containing the tree to
be updated, which contains the object
description of the object to be removed in
l element tree [delob].
delob WORD Deleted object index

6.2.4 Function Result

The index within the object tree array (the
object index) of the object which is to be
deleted.

l The value returned will be zero if an error occurred, or greater than zero if no

error was detected.

6.2.5 Example

OBJECT *the tree;
l WORD object;

l /* Remove an entire arm of an object tree */
objc_delete(the tree, object);

7 AES-92 Section 6 — Object library
6.3 Draw Objects in Tree objc_draw

Draw Objects in Tree is used to draw any object, and optionally any of its
children, contained in an object tree.

6.3.1 Definition

The Prospero C definition of Draw Objects in Tree is :

WORD objc_draw (OBJECT *tree, WORD drawob, WORD depth,
WORD xc, WORD yc, WORD wc, WORD hc);

6.3.2 Purpose

This function can be used by an application to-draw an object in the object tree
specified by the parameter t ree. The object’s children may also be drawn, up
to the number of generations specified by the parameter depth. The position
on the screen where the object is drawn is determined by the ob_x and ob_y
fields of the root object of the tree (object index 0), and the relative offsets in
the ob_x and ob_y fields of any descendants of the root which are ancestors of
the object to be drawn. This screen offset can be discovered by using the
objc_offset function (section 6.5). The manner in which each object is
drawn is determined by the relevant values in the object’s header structure.
Note that any object whose HIDETREE bit is set in the ob_flags field will
not be drawn, nor will any of its descendants.

A clipping rectangle is given, outside which no screen output will occur. This
might be used to clip the output of the object to the visible portion of a window
— see section 11 for further details of how this might be achieved.

|

] 7 Section 6 - Object library

AES-93

6.3.3

Parameters

I Parameter Type of

name

parameter

Parameter description
Function of parameter

tree

drawob

depth

XC
S

wC
I hc

OBJECT *

WORD

WORD

WORD

WORD

WORD
WORD

Tree containing object to be drawn

The pointer to the object tree array containing
the descriptions of the objects to be drawn (in
element tree [drawob] and its descendants).

Starting object index

The index within the object tree array (referred
to as the object index) of the object at which
drawing is to start. This will most frequently be
zero (the root object), to draw the entire tree.

Number of levels to draw

The number of generations of children of the
starting object which are to be drawn. Thus a
value of 0 indicates that the starting object only
is to be drawn, while 1 would draw its children
but not their children, and so on. A suitably
large value can be used to make all descendants
appear — no tree is allowed more than 32767
objects, even if memory were available.

X coordinate of clip rectangle
Y coordinate of clip rectangle

The x and y coordinates of the top left hand
corner of the rectangle to which all objects
output are to be clipped.

Width of clip rectangle
Height of clip rectangle

The width and height (in pixels) of the rectangle
to which all objects output are to be clipped.

7 AES-94 Section 6 — Object library

6.3.4 Function Result

The value returned will be zero if an error occurred, or greater than zero if no
error was detected.

6.3.5 Example

OBJECT * the tree;

/* Draw the root and its first generation children,
clipping to the given rectangle */
objc_draw(the tree, 0, 1, 100, 100, 200, 50);

l 7 Soction 6 — Object library AES-95

6.4 Find Object under Point objec_find
Find Object under Point is used to find which object in a tree lies under a
l specified point. This can be used to find which object has been selected with the
mouse.
{ 6.4.1 Definition

The Prospero C definition of Find Object under Point is :

WORD objc_find(OBJECT *tree, WORD startob, WORD depth,
WORD mx, WORD my) ;

6.4.2 Purpose

‘ This function can be used by an application to find which object in the object
tree specified by the parameter t ree lies under the specified point. This is
normally used to discover which object a user has selected, by seeing what

l object lies under the mouse cursor’s position when a mouse button click is
detected. The depth and starting point of the search can be specified with the
parameters startob and depth. Note that any object whose HIDETREE bit
is set in the ob_flags field will not be searched, nor will any of its

l descendants.

7 AES-96

Section 6 — Object library

6.4.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

tree OBJECT *

startob WORD

depth WORD
mx WORD
my WORD

Tree to be searched

The pointer to the array containing the tree
which is to be searched.

Starting object index

The index within the object tree array (referred
to as the object index) of the object at which the
search is to start.

Number of levels to search

The number of generations of children of the
starting object which are to be searched. Thus a
value of 0 indicates that the starting object only
is to be checked, while 1 would also check its
children but not their children, and so on. A
suitably large value can be used to make all
descendants be included — no tree is allowed
more than 32767 objects, even if memory were
available.

X coordinate of search point
Y coordinate of search point

The x and y coordinates of the point under
which an object is to be found.

| / Section 6 — Object library AES-97
6.4.4 Function Result

The function returns the object index of the object found, or —1 if no object

I searched lies under the specified point. The search is done on a depth first basis
— if a child is under the specified point, so must its parent be, but it is the index
of the child which is returned.

6.4.5 Example

I OBJECT *the tree;
WORD mx, my, screen width, screen_height;
WORD dummy;

l WORD selected;

/* Set up tree containing icons and other goodies */

l /* Draw the entire tree */
objc_draw(the tree, 0, 32767, 0, 0, screen_width,
screen_height);

l /* Wait for a click on left button */
evnt button(l, 1, 1, &mx, &my, &dummy, &dummy) ;

| selected = objc_find(the_tree, 0, 32767, mx, my);
if (selected == -1)

{ /* click wasn't on an object
- could allow a group selection */

}
else
l { /* Deal with selected object */

}

/ AES-98 Section 6 — Object library
6.5 Calculate Object Offset objc_offset

Calculate Object Offset is used to find the screen coordinates of a particular
object in an object tree.

6.5.1 Definition
The Prospero C definition of Calculate Object Offset is :

WORD objc_offset (OBJECT *tree, WORD obj,
WORD *poffx, WORD *poffy);

6.5.2 Purpose

This function can be used by an application to return the screen coordinates of
the top left hand corner of an object in an object tree. The values in an object’s
ob_x and ob_y fields are relative to the position of its parent, so that the offset
of an object relative to the screen can only be determined by adding together
the offsets of all its ancestors, including the root, whose offsets are relative to
the screen. This is what this function does.

6.5.3 Parameters

Parameter Type of Parameter description

name parameter Function of parameter

tree OBJECT * Tree to be searched
The pointer to the array containing the tree
concerned.

obj WORD Object index

The index within the object tree array (referred
to as the object index) of the object whose screen
offset is to be calculated.

poffx WORD * X offset of object
poffy WORD * Y offset of object

These parameters point to objects which return
the x and y offsets of the specified object in
pixels relative to the screen origin (the top left
hand corner).

‘ 7 Section 6 — Object library

AES-99

6.5.4 Function Result

The value returned will be zero if an error occurred, or greater than zero to

indicate no error was detected.

6.5.5 Example

OBJECT * the_tree;
WORD x, y, my_obj;

/* Find offset of my obj */
objc_offset (the tree, my obj, &x,

&y)

7 AES-100 Section 6 — Object library
6.6 Alter Object Order objc_order

Alter Object Order is used to alter the order of the children of a particular
parent object.

6.6.1 Definition
The Prospero C definition of Alter Object Order is :

WORD objc_order (OBJECT *tree,
WORD mov_obj, WORD newpos) ;

6.6.2 Purpose

This function can be used by an application to move an object to a new position
in its parent’s list of children. To make any alteration to the object tree which
involves a change of parent, objc_delete followed by objc add should be
used, as described in sections 6.1 and 6.2. The order of children will affect the
order in which they are drawn or searched by the objc draw (section 6.3)
and objc_find (section 6.4) functions, which may be relevant if the objects
concerned overlap.

6.6.3 Parameters

Parameter Type of Parameter description

name parameter Function of parameter

tree OBJECT * Tree to be searched
The pointer to the array containing the tree
concerned.

mov_obJj WORD Object index of child to move

The object index within the tree of the object
whose position in its parent’s list of children is
to be changed.

I

I 7 Section 6 — Object library AES-101

newpos WORD New position of child

The new position in the parent’s list of children
which the object is to take, as follows :-

0 - last child
1 - last but one child
2 —last but two (etc.)
—1 —first child

6.6.4 Function Result

The value returned will be zero if an error occurred, or greater than zero to
indicate no error was detected.

6.6.5 Example

OBJECT *the_ tree;
WORD child obj;

/* Make object the first child */
objc order (the tree, child obj, -1);

7 AES-102 Section 6 — Object library
6.7 Edit Text Object objc_edit

Edit Text Object is used to allow a user to interact with an editable text object
on a form or dialog.

6.7.1 Definition
The Prospero C definition of Edit Text Object is :

WORD objc_edit (OBJECT *tree, WORD obj, WORD inkey,
WORD *idx, WORD kind) ;

§.7.2 Purpose

This function can be used by an application to allow a user to interact with an
editable text item on a form or dialog, which are really just special forms of
object trees. Most applications will not need to use this function, even if they
make use of editable text fields, as all such interactions with a dialog are
handled internally by the form_ do function (section 7.1). Only if an
application needs to use forms with features not supported by form do —
perhaps slider bars for setting values, or the ability to perform background
calculations while awaiting the user’s response — will it need to drive the
editable text handling itself.

To handle interaction with a form, an application will have to keep track of
which item is being processed (GEM version 2.0 provides two routines to help
here — form_keybd (section 7.6) and form button (section 7.7) — but these
are not available in GEM version 1.1), wait for events and process them when
they arrive. When a keystroke is detected, the application should first check
whether it is a tab, backtab, uparrow, downarrow or return character, which
might change to a new text item (this can be done using form keybd in GEM
version 2.0), then process the character against the current editable text object
using this function.

The function performs 3 separate functions, according to the value of the
parameter kind:

l 7 Section 6 — Obiject library

AES-103

Value
0
I 1

Name
ED START
ED_INIT

ED_CHAR

ED_END

Function
Reserved for future use.

Turn on text cursor on object, and combine text
and template into a formatted string. The value of
inchar is not relevant, nor the initial value of
idx. On return, idx will contain the initial
cursor position within the string (immediately
after the last character). This should be used when
the object becomes the current editable text
object.

Validate the key pressed against the template,
update the string and the cursor position. This is
used when a key press is detected.

Turn off text cursor. Use this when the object is
no longer the current object, or when form
processing is about to finish.

I The above macros are provided in the AESBIND.H header file.

The function definition in Digital Research’s GEM version 1.1’s C bindings is
| slightly different from that in GEM version 2.0 (in GEM version 1.1, the new
character position is returned in a separate WORD * parameter), though they
are functionally equivalent and the underlying GEM function has not changed.
I The Prospero C binding provided is the same as the GEM version 2.0 version
of the Digital Research bindings, which is slightly easier to use.

[6.7.3 Parameters

Parameter Type of

parameter

Parameter description
Function of parameter

l name

tree

OBJECT *

Tree containing object

The pointer to the array containing the tree
describing the form which is being processed.

7 AES-104 Section 6 — Object library
ob3j WORD Object index of editable text

The index within the object tree array (referred
to as the object index) of the editable text object.
This must have an object type of G_FTEXT or
G_FBOXTEXT in the ob_type field.

inkey WORD Key to be validated

The character which the user has typed, which is
to be inserted into the text at the current text
position, if it matches the corresponding
validation character in the template. The value
passed should be the same as that returned by
evnt_multi (section 4.6) or evnt keybd
(section 4.1) when the key press was detected.

idx WORD * Cursor position in raw text

Points to an object containing the position
within the raw text at which the character is to
be inserted if possible. The value in this object is
updated, ready to be passed to the function again
when the next character is received. In the GEM
1.1 Digital Research bindings the updated value
was returned via a separate parameter called
ob_ednewidx.

kind WORD Operation required

A value in the range 0 to 3 indicating which
function is required, as described above in
6.7.2.

6.7.4 Function Result

The value returned will be zero if an error occurred, or greater than zero to
indicate no error was detected.

I y Section 6 — Object library AES-105
6.7.5 Example

selection of which field to edit, and very much dependent

on all the editable text objects in the form having

consecutive numbers.

If form _keybd (section 7.6) were used to process the tab,
l backtab etc. cases, this restriction could be easily

removed, as shown in the example in section 7.6.5 */

I /* A very simple form handler, with no support for mouse

#define textlobj 20 /* Provided by resource editor when form */
#define text2obj 21 /* was created */
#define text3obj 22

OBJECT *the_form;
I WORD current_obj, key, pos;

current_obj = textlobj;
objc_edit (the_form, current_obj, 0, &pos, ED_INIT);
I /* Initialize first editable text field */
do
{ key = evnt_keybd();
switch (key)
{ case tab:
l case cursordown:
if (current obj != text3obj)
{ objc_edit (the_form, current obj, key, &pos, ED_END);
/* Remove cursor from current text field */
I current_obj ++;
objc_edit (the_form, current obj, key, &pos, ED_INIT);
/* Initialize new text field */
}
l break;

case backtab:
case cursorup:

if (current_obj != textlobj)
I { objc_edit (the form, current obj, key, &pos, ED_END);
current _obj --;

objc_edit (the form, current_obj, key, &pos, ED_INIT);
}
l break;

case carriage_return:
objc_edit (the_form, current_obj, key, &pos, ED_END);

I /* Remove cursor ready to terminate */
break;
default:
objc_edit (the_form, current_obj, key, &pos, ED_CHAR);
/* Process the character typed */

break;
} /* switch */
l } while (key != carriage_ return);

7 AES-106 Section 6 — Object library
6.8 Change Object State objc_change

Change Object State is used to set the value of the ob_state field of an object.
It will often be simpler and always faster to change it directly, by a statement
such as

tree[index] .ob_state = newstate;

or using the additional Prospero C binding objc_newstate (section 6.10).

6.8.1 Definition
The Prospero C definition of Change Object State is :

WORD objc_change (OBJECT *tree, WORD drawob, WORD depth,
WORD xc, WORD yc, WORD wc, WORD hc,
WORD newstate, WORD redraw) ;

6.8.2 Purpose

This function can be used by an application to change the value in an object's
ob_state field, which determines the way in which it is drawn — see the
introduction to section 6 for further details of the ob_state field. It offers
two features not available when simply altering the state field as described
above: the object may optionally be redrawn using the new state, and a clipping
rectangle may be specified. The GEM AES documentation states that only
those parts of the object which are contained within the clipping rectangle will
have their state changed — it is hard to see what this means, as the object is a
single entity with a single state field. The clipping rectangle seems more
relevant to the (optional) redraw.

There is a parameter called depth, currently reserved, which presumably is
intended to allow the new state to be applied to all children of the specified
object up to a particular number of levels in some future release. When this is
implemented, the clipping rectangle may be of more relevance! Applications
should ensure that they pass a value of zero in the depth field, otherwise they
may find that the effect of the call suddenly changes dramatically in future
versions of GEM.

/ Section 6 — Object library

AES-107

6.8.3 Parameters

Parameter Type of

Parameter description

name parameter Function of parameter

tree OBJECT * Tree containing object
The pointer to the array containing the tree
describing the form which is being processed.

drawob WORD Object to be changed
The index within the object tree array (referred
to as the object index) of the object whose state
is to be changed.

depth WORD Reserved
Reserved for future use. A value of zero must
be passed.

bdo WORD Clipping rectangle X coordinate

yC WORD Clipping rectangle Y coordinate

we WORD Clipping rectangle width

hc WORD Clipping rectangle height
The clipping rectangle to be used in the optional
redraw. If the specified object does not lie
within the clipping rectangle, it may not be
changed.

newstate WORD New object state
The new value for the specified object’s
ob_state field.

redraw WORD Redraw flag

If this is one, the object will be redrawn in its
new state using the specified clipping rectangle.
If zero, no redraw will occur.

/ AES-108 Section 6 — Object library
6.8.4 Function Result

The value returned will be zero if an error occurred, or greater than zero to
indicate no error was detected.

6.8.5 Example
#define NORMAL 0 /* In AESBIND.H */

OBJECT *form;
WORD end object;

/* Interact with a form */
end_object = form do(form, 0);

/* The object which caused exit from the form has its
selected state bit set - must reset this before
reusing the form */

objc_change (form, end object, 0, 0, 0, 500, 500,
NORMAL, O0);

/* Could have written
form[end object].ob state = NORMAL; */

[

I 7 Soction 6 — Object library AES-109

6.9 Return Object State objc_state

Return Object State is used to return the value of the specified object’s
ob state field. It is not part of the original Digital Research bindings, but is
provided as a macro in Prospero C to simplify the access of this field. The
equivalent variable access is

state = tree[object].ob_state;

6.9.1 Definition
The Prospero C definition of Return Object State is :

WORD objc state (OBJECT *tree, WORD object);

6.9.2 Purpose

This function can be used by an application to return the value in an object’s
ob state field, which determines the way in which it is drawn — see the
introduction to section 6 for further details of the ob_state field. It is not
provided in the original Digital Research bindings. "Note that it is in fact
implemented as a macro in AESBIND.H.

6.9.3 Parameters

Parameter Type of Parameter description

name parameter Function of parameter

tree OBJECT * Tree containing object
The pointer to the array containing the tree
concerned.

object WORD Object

The index within the object tree array (referred
to as the object index) of the object whose state
is to be returned.

y AES-110 Section 6 — Object library
6.9.4 Function Result

The result returned is a WORD giving the current value of the object’s
ob_state field.

6.9.5 Example

#define buttonl 21 /* Sample constants from */
#define button2 22 /* resource editor */
#define button3 23

#define SELECTED 0x0001 /* From AESBIND.H file */

OBJECT *form;
WORD end object, 1i;

/* Interact with a form */
end object = form do(form, 0);

for (i = buttonl; i <= button3; i++)
if (objc_state(form, i) & SELECTED)
{ /* The option corresponding to each button
selected should be put into force */

[y Section 6 — Obiject library AES-111

6.10 Set Object State objc_newstate

Set Object State is used to set the value of the specified object’s ob_state
field. It is not part of the original Digital Research bindings, but is provided in
Prospero C to simplify the access of this field, as a complementary function to
objc_state (see section 6.9). The equivalent variable access is

tree[object].ob state = newstate;

6.10.1 Definition
The Prospero C definition of Set Object State is :

void objc_newstate (OBJECT *tree,
WORD object, WORD newstate);

6.10.2 Purpose

This function can be used by an application to set the value in an object’s
ob_state field, which determines the way in which it is drawn — see the
introduction to section 6 for further details of the ob_state field. This
function is not provided in the original Digital Research bindings. However,
the function objc_change (see section 6.8) may be used for this purpose —
this includes the ability to specify a clipping rectangle and optionally redraw
the object. When the object concerned is not displayed, it is simpler and faster
to use the function objc_newstate described here. Note that this function is
declared as a macro in AESBIND.H.

7 AES-112

Section 6 — Object library

6.10.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

tree OBJECT *

object WORD

newstate WORD

6.10.4 Function Result

There is no function result.

6.10.5 Example

#define buttonl 21
#define button2 22
#define button3 23

Tree containing object

The pointer to the array containing the tree
concerned.

Object

The index within the object tree array (referred
to as the object index) of the object whose state
is to be set.

New object state

The value to which the object’s ob_state field
is to be set.

/* Sample constants from */
/* resource editor */

#define SELECTED 0x0001 /* From AESBIND.H file */

OBJECT *form;
WORD 1i;

/* Unselect all buttons before using form */

for (i = buttonl;

i <= button3; i++)

objc_newstate(form, i, objc state(form, i) &

(~SELECTED)) ;

I 7 Section 6 — Object library AES-113

6.11 Return Object Flags objc_flags

Return Object Flags is used to return the value of the specified object’s
ob_flags field. It is not part of the original Digital Research bindings, but is
provided in Prospero C to simplify the access of this field. The equivalent
variable access is

flags = tree[object].ob flags;

6.11.1 Definition
The Prospero C definition of Return Object Flags is :

WORD objc_flags (OBJECT *tree, WORD object);

6.11.2 Purpose

This function can be used by an application to return the value in an object’s
ob_flags field, which determines the way in which it is affected by mouse
and keyboard input from the user when interacting with a form — see the
introduction to section 6 for further details of the ob_flags field. It is not
provided in the original Digital Research bindings. Note that this is declared as
amacro in AESBIND.H.

6.11.3 Parameters

Parameter Type of Parameter description

name parameter Function of parameter

tree OBJECT * Tree containing object
The pointer to the array containing the tree
concerned.

object WORD Object

The index within the object tree array (referred
to as the object index) of the object whose flags
are to be returned.

7 AES-114 Section 6 — Object library

6.11.4 Function Result

The result returned is a WORD giving the current value of the object’s
ob flags field.

6.11.5 Example

#define DEFAULT 0x0002 /* From AESBIND.H file */

OBJECT *form;
WORD 1i;

/* Find the object whose DEFAULT bit is set. In
practice, the tree would be scanned by following
the pointers, to allow the detection of the case
where no object has the default bit set */

i=0;
while ((objc_flags(form,i) & DEFAULT) == 0)
i ++;

! 7 Section 6 — Object library AES-115
6.12 Set Object Flags objc_newflags

I Set Object Flags is used to set the value of the specified object’s ob_flags

field. It is not part of the original Digital Research bindings, but is provided in
Prospero C to simplify the access of this field, as a complementary function to
objc_flags (section 6.11). The equivalent variable access is

tree[object] .ob flags = newflags;

[6.12.1 Definition
The Prospero C definition of Set Object Flags is :

l void objc_newflags (OBJECT *tree,
WORD object, WORD newflags):;

[6.12.2 Purpose

This function can be used by an application to set the value in an object’s
l ob_flags field, which determines the way in which it is affected by mouse

and keyboard actions when a form is being processed — see the introduction to

section 6 for further details of the ob_flags field. It is not normal practice to
l alter the flags of an object once they have been set up —however it is sometimes

useful to set the HIDETREE flag to conceal part of a form in a situation when

that part is not relevant. This function is not provided in the original Digital

Research bindings. Note that this function is declared as a macro in
l AESBIND.H.

7 AES-116

Section 6 — Obiject library

6.12.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

tree OBJECT *

object WORD

newflags WORD

6.12.4 Function Result

There is no function result.

6.12.5 Example

#define subtree 15

Tree containing object

The pointer to the array containing the tree
concerned.

Object

The index within the object tree array (referred
to as the object index) of the object whose flags
are to be set.

New object flags

The value to which the object’s ob_flags field
is to be set.

/* Sample constant from
resource editor */

#define HIDETREE 0x0080 /* From AESBIND.H file */

OBJECT *form;

objc_newflags(form,

subtree,

(objc_flags(form, subtree) | HIDETREE));

/* Hide the object and its children before displaying

and using form */

}

l 7 Section 6 — Object library AES-117

6.13 Return Object Text objc_text

Return Object Text is used to return the text associated with a given object. It is
not part of the original Digital Research bindings, but is provided in Prospero
C to simplify the access of this field.

6.13.1 Definition
The Prospero C definition of Return Object Text is :

char *objc_text (OBJECT *tree, WORD object);

6.13.2 Purpose

This function can be used by an application to return a pointer to the text
associated with an object. It would normally only be used for editable text
objects, to discover the text which the user entered after a user has interacted
with a form.

This function is not provided in the original Digital Research bindings.

6.13.3 Parameters

Parameter Type of Parameter description

name parameter Function of parameter

tree OBJECT * Tree containing object
The pointer to the array containing the tree
concerned.

object WORD Object

The object index of the object whose text is to be
returned.

6.13.4 Function Result

A pointer to the text associated with the specified object is returned. If the
specified object is not of type G_STRING, G_BUTTON, G_TITLE,
G_TEXT, G BOXTEXT, G_ FTEXT or G_ FBOXTEXT, the value returned
will be NULL.

7 AEs-118 Section 6 — Object library
6.13.5 Example

#define textobj 20 /* Sample constant from
resource editor */

OBJECT *form;
char *result;

/* Specify first object to edit */
form do(form, textobj):;

/* get pointer to the string the user typed */
result = objc_text (form, textobj):;

|

l 7 Section 6 - Obiject library AES-119

6.14 Set Object Text objc_newtext

Set Object Text is used to initialize or modify the text of any object which has a
text field. For editable text objects of type G_FTEXT and G_FBOXTEXT,
this can be used to set up the initial contents before allowing the user to modify
it using form_do (section 7.1). This function is not part of the original Digital
Research bindings, but is provided in Prospero C to simplify the creation and
use of dialog boxes.

6.14.1 Definition
The Prospero C definition of Set Object Text is :

void objc_newtext (OBJECT *tree,
WORD object, const char *newtext);

6.14.2 Purpose

This function can be used by an application to specify the text of an object of
type G_STRING, G_BUTTON, G _TEXT, G BOXTEXT, G_FTEXT or
G_BOXTEXT. For editable text objects, this function is useful for giving the
suggested or default value of a text field that the user may alter. Other text
objects are not normally altered once set up, and this function will usually only
be used when a form is first created. The new text is copied to the address
previously occupied by the old text, or into newly allocated memory if the text
pointer was previously NULL - this will only be true if the object has been
created using objc_item and not yet initialized. Thus the length of the new
string must not exceed the length of the first string which was allocated to that
particular object.

This function is not provided in the original Digital Research bindings.

7 AES-120

Section 6 — Object library

6.14.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

tree OBJECT *

object WORD

newtext const char *

6.14.4 Function Result

There is no function result.

6.14.5 Example

#define textobj 20

Tree containing object

The pointer to the array containing the tree
concerned.

Object

The index of the object whose text is to be set.

Object’s text field

This parameter points to a null-terminated
string containing the text which will be
displayed next time the object is drawn. If the
specified object is of a type which has no text,
this function will have no effect. Care should be
taken not to exceed the space available, which
depends upon the length of the first string
associated with the object.

/* Sample constant from resource editor */

OBJECT *form;
char *result;

/* Set up initial value */
objc newtext (form, textobj, "100");

/* Draw and process the form - see section 7 */

/* Obtain final value */
result = objc_text (form, textobj);

‘ y Section 6 — Object library AES-121

6.15 Read/Write Object Header objc_read
objc_write

l Read and Write Object Header are provided to give easy access to the various
fields which describe objects in AES object trees. Although in C these fields
can be accessed quite easily using a variable access such as

{ tree ptr(index].fieldname, these bindings are still useful, for cases
where a number of entire object headers are being set up (such as when
creating an object tree). These functions are not part of the original Digital

l Research bindings.

6.15.1 Definition
l The Prospero C definitions of Read and Write Object Header are :

void objc_read(OBJECT *tree, WORD object,

I WORD *next, WORD *head, WORD *tail,
WORD *type, WORD *flags, WORD *state,
unsigned long *spec,

WORD *x, WORD *y,
[WORD *width, WORD *height) ;

void objc_write (OBJECT *tree, WORD object,

I WORD next, WORD head, WORD tail,
WORD type, WORD flags, WORD state,
unsigned long spec,

WORD x, WORD vy,
! WORD width, WORD height) ;

l 6.15.2 Purpose

These functions can be used to examine, alter or initialize the contents of an

object header structure. See the introduction to section 6 for more information

about this structure. Note that simpler functions are provided to examine or
l alter the f1ags or state fields — see sections 6.9 to 6.13.

The parameters next to height correspond to the fields of the object header
I described in the introduction to section 6. The function objc read transfers

the contents of the specified object header into the variables pointed to by the

parameters, while objc_write transfers the values passed into the object
!’ header.

These functions are not provided in the original Digital Research bindings.

7/ AES-122 Section 6 — Object library

6.15.3 Parameters

Parameter Type of Parameter description

name parameter Function of parameter

tree OBJECT * Tree containing object
The pointer to the array containing the tree
concerned.

object WORD Object

The index within the object tree array of the
object whose header is to be read or written.

next WORD Link to next object
WORD *
This field of the object header contains the
otject index of the next object in the tree. This
will normally the next child of the object’s
parent, or the parent itself for the last child. A
value of —1 indicates there is no next object.

head WORD Link to first child
WORD *
This field of the object header contains the
object index of the first child of the object, or ~1
if the object has no children.

tadl WORD Link to last child
WORD *
This field of the object header contains the
object index of the last child of the object, or —1
if the object has no children.

type WORD Type of object
WORD *
This field contains the object type. See the
introduction to section 6 for a description of the
types available.

l

AES-123

l / Section 6 — Object library

flags WORD
WORD *
state WORD
| WORD *
spec unsigned long
[unsigned long *
I x WORD
Y or
width WORD *
height

Object’s flags field

This field contains information which
determines the way in which the object interacts
with the mouse if used in a form. Each bit of the
value has an individual meaning — these are
described in the introduction to section 6.

Object’s state field

This field contains information which
determines the way in which the object is
drawn, and will be altered to cause changes in
appearance if the object interacts with the mouse
in a form. Each bit of the value has an individual
meaning - these are described in the
introduction to section 6.

Object’s specification

This field is four bytes whose meaning depend
upon the type of the object specified by the
ob_type field. For simple objects, this
contains information about the color, border,
and fill style. For more complicated objects, this
field contains a pointer to an area of memory
giving further information about the object. See
the introduction to section 6 for further details.

Object’s X coordinate
Object’s Y coordinate
Object’s width
Object’s height

These fields of the object header describe the
position and size of the object’s bounding
rectangle. For all objects other than the root, the
coordinates are relative to the top left hand
corner of the parent. Note that all children of an
object should lie completely within the parent’s
bounding box.

7 AEs-124 Section 6 — Object library
6.15.4 Function Result

There is no function result

6.15.5 Example

#define G_BUTTON 26
#define G_STRING 28
#define NORMAL 0 /*Constants from AESBIND.H file*/

OBJECT *tree;

WORD object, ob next, ob head, ob_tail;
WORD ob type, ob_ flags, ob_state;
unsigned long ob_ spec;

WORD ob _x, ob_y, ob w, ob_h;

/* A very inefficient way to alter an ob type field */

objc_read(tree, object, &ob_next, &ob_head, &ob tail,
&ob_type, &ob_ flags, &ob_state,
&ob_spec, &ob_x, &ob_y, &ob_w, &ob_h);

if (ob_type == G_BUTTON)
objc_write(tree, object, ob_next, ob_head, ob_tail,
G_STRING, ob_flags, NORMAL,
ob_spec, ob x, ob_y, ob_w, ob _h);

/* Could have written
if (tree(object].ob_type == G_BUTTON)
{ tree[object].ob_type = G_STRING;
tree[object] .ob_state = NORMAL; } */

l

l y Section 6 — Obiject library AES-125

6.16 Create Object Tree objc_create

Create Object Tree is used to allocate space for an object tree so that it can be
used for a dialog box, and to initialize the root of the tree. Items can then be
added to the tree using objc_add (section 6.1) or more easily using the
additional Prospero C binding objc_item (section 6.17). It is normally
preferable to create all forms and dialogs using a resource editor, but for
simple applications or where no resource editor is available, these routines can
be used to set up dialogs for obtaining input from the user. This function is not
part of the original Digital Research bindings.

6.16.1 Definition
The Prospero C definition of Create Object Tree is :

OBJECT *objc_create (WORD items,
WORD x, WORD y, WORD w, WORD h);

6.16.2 Purpose

This function is used when dynamically creating dialog forms (as opposed to
reading them in from a resource file). Section 6.1 outlines how to create such a
form using objc_add — the functions objc create and objc_item
(section 6.17) were added to the bindings by Prospero Software to simplify the
function.

The form is created, and a pointer to it obtained by calling objc_create,
specifying the number of objects which will be placed in the form. It is a good
idea to allow for a few extra items in case more objects are added in later
versions of the program. Each object in the form is then added individually
using objc_item (section 6.17), specifying its parent, type, position, flags,
state and color. For any object other than a box, the object will require some
additional initialization. For objects which involve a string of text, the text may
be set up using objc_newtext (section 6.14), or objc_tedinfo (section
6.18) for editable text objects. Other objects may need the structure pointed to
by the ob_spec field to be set up.

This function is not provided in the original Digital Research bindings.

7 AES-126

Section 6 — Object library

6.16.3 Parameters

Parameter Type of

Parameter description

name parameter Function of parameter

items WORD Number of objects to be added
The number of objects which will be added to
the tree. If more are added, other data will be
overwritten, and unpredictable results will
occur, so it is a good idea to err on the generous
side.

x WORD Root object’s X coordinate

v WORD Root object’s Y coordinate

w WORD Root object’s width

h WORD Root object’s height

6.16.4 Function Result

The coordinates of the root box which is to
contain the dialog form. The above coordinates
are given in CHARACTERS not pixels, so that
programs can easily be made independent of
screen resolution.

The function returns a pointer to the newly created tree, which can then be
used as a parameter to objc_item or any of the other functions in the object

and form libraries.

I 7 Section 6 — Obiject library AES-127
6.16.5 Example

OBJECT *my_form;
I WORD cancel, ok, the string;
WORD x, y, w, h;

[my form = objc create(10, 0, 0, 30, 20);
/* Note x and y coords don't matter if form center
is used */

I ok = objc_item(my_ form, 0, G_BUTTON,
SELECTABLE | EXIT | DEFAULT,
NORMAL,
22, 18, 6, 1,

I 0, 0);

objc_newtext (my form, ok, "OK");
cancel = objc_item(my form, 0, G_BUTTON,

SELECTABLE | EXIT,
I NORMAL,
14, 18, 6, 1,
, 0, 0);
I objc_newtext (my form, cancel, "Cancel");

the string = objc_item(my_ form, 0O, G_STRING,
NONE, NORMAL,

I 5, 10, 25, 1,
0, 1);

obcj newtext (my form, the string,
l "A piece of black text");

form center (my form, é&x, &y, &w, &h);

form dial (FMD_START, 0,0,0,0, » vy, w ,h);
l objc_draw(my_ form, 0, 2, x, y, w, h);

if (form do(my form, 0) == ok)

{ /* clicked ok button */

}
I else
{ /* must have clicked cancel */

}

7 AES-128 Section 6 — Object library
6.17 Insert Item into Object Tree objc_item

Insert Item into Object Tree is used to add objects to a dialog form created
using objc_create (section 6.16). It is not suitable for dialog forms loaded
from a resource file, as these will not have free object headers allocated. This
function is not part of the original Digital Research bindings.

6.17.1 Definition
The Prospero C definition of Insert Item into Object Tree is :

WORD objc item (OBJECT *form, WORD parent,
- WORD otype, WORD oflags, WORD ostate,
WORD x, WORD y, WORD w, WORD h,
WORD border, WORD color);

6.17.2 Purpose

This function is used when dynamically creating dialog forms (as opposed to
reading them in from a resource file). Section 6.1 outlines how to create such a
form using objc_add — the functions objc_item and objc_create
(section 6.16) were added to the bindings by Prospero Software to simplify the
function.

Having created a form using objc_create (section 6.16), items can be added
to it with this function. This causes the next free object header to be linked into
the tree in the specified position, and its index returned so that the object can be
referred to in subsequent calls to the object or form library routines. The
fields of the object header are all set up from the information given in the
parameters —however for objects of types G_ICON, G _IMAGE,
G_PROGDEEF, and any object containing text, the ob_spec field will contain
a pointer to some additional information, which must be set up by the program
before using the form. For G_STRING, G_BUTTON, G _TEXT and
G_BOXTEXT objects, this can be done with a call to objc_newtext (section
6.14). G_FTEXT and G_FBOXTEXT items can be set up using the additional
Prospero C binding objc_tedinfo (section 6.18). For objects of type
G_IMAGE, G_ICON and G_PROGDEEF, the additional structure must be set
up explicitly (though the space for it and the pointer to it will have been
allocated by objc_item).

This function is not provided in the original Digital Research bindings.

l

AES-129

I y Section 6 — Object library
6.17.3 Parameters

l Parameter Type of Parameter description
name parameter Function of parameter
form OBJECT * Dialog form being created

l parent WORD

l otype WORD

oflags WORD
l ostate WORD

The tree pointer of the tree to which the object
is to be added. This should have been created
using objc_create (section 6.16) — forms
loaded from a resource file will not have any
free space at the end of the tree, and so would
cause other data to be overwritten if used.

Parent of object to be added

The object which is to be the parent of the new
object. For simple forms, the root object (index
zero) will be the parent of all other objects in
the tree. However, it is sometimes useful to
make a group of buttons children of an IBOX
object, so that they can all be drawn, hidden or
searched at a time. If radio buttons are used, all
buttons which have the same parent will
interact, so that selecting one causes the others
to be deselected.

Type of object to be added

The type of the object. This should be one of the
constants described at the beginning of section
6, which are declared in the header file
AESBIND H. If the object type is one where the
ob_spec field contains a pointer to a structure
of additional information, the space for this
structure will be allocated.

Object flags
Object state

These parameters are copied to the ob_flags
and ob_state fields of the new object. The
introduction to section 6 describes the meanings
of these two fields.

7 AES-130

Section 6 — Object library

WORD
WORD
WORD
WORD

oKX

border WORD

color WORD

6.17.4 Function Result

Object’s X coordinate
Object’s Y coordinate
Object’s width
Object’s height

The coordinates of the object, relative to its
parent. These are given in CHARACTERS, so
that programs can easily be made independent
of screen resolution.

Object border thickness

The thickness of the border to be drawn around
the object, in pixels. Positive values indicate a
border drawn inwards from the edge of the
object, while negative thicknesses are drawn
outwards. Note that this parameter is not used
for objects of types G_ BUTTON, G_STRING,
G_ICON, G_IMAGE or G_PROGDEF.

Object color word

The color of the object’s border, text and fill.
The format of this word is described in detail in
the introduction to section 6 — basically the top
four bits give the border color, the next 4
describe the text color where appropriate, the
next bit selects transparent (0) or replace (1)
mode, followed by 3 bits selecting the style in
which the box is to be filled, then 4 bits giving
the fill color. Note that this parameter is not
used for objects of types G_BUTTON,
G_STRING, G_ICON, G_IMAGE or
G_PROGDEF.

The function returns the index of the object added, which can then be used as a
parameter to any of the other functions in the object and form libraries.

[/ Section 6 — Object library AES-131
6.17.5 Example

l #include <AESBIND.H>

OBJECT *my_form;
WORD cancel, ok, find title, find_text,

l find forwards, find backwards, rbox;
WORD x, vy, w, h;

my form = objc_create(10, 0, 0, 30, 20);

l /* First give the form a title ... */
find title = objc_item(my_form, 0, G_STRING,
NONE, NORMAL,
l 13, 2, 4, 1,
0, 0);

objc_newtext (my form, find title, "FIND");

l /* Add an editable text field for search text */
find text = objc_item(my_form, 0, G_FTEXT,
EDITABLE, NORMAL,

I 3, 4, 24, 1,
0, 0x0100);
objc_tedinfo(my_ form, find text,
["@234567890123456",
"Find :- "y
19:0:0:9:0:0.0:0:9:9:9.9:9.9.0.0 G
3, 0):

/* Make invisible box to group the radio buttons */
rbox = objc_item(my form, 0, G_IBOX,

NONE, NORMAL,
l 3, 6, 24, 2, 0, 0);

/* ... and put two radio buttons in it */
l find forwards = objc_item(my_form, rbox, G_BUTTON,
SELECTABLE | RBUTTON,
NORMAL,
2, 1, 9, 1,
l 0, 0);
objc_newtext (my form, find forwards, "Forwards");

find backwards = objc_item(my_form, rbox, G_BUTTON,
SELECTABLE | RBUTTON,
l NORMAL,
13, 11, 9, 1,
0, 0);
] objc_newtext (my form, find backwards, "Backwards");

7 AES-132 Section 6 — Object library

/* Add a pair of exit buttons, OK and CANCEL */
ok = objc_item(my form, 0, G_BUTTON,
SELECTABLE | EXIT | DEFAULT,
NORMAL,
22; 18 64+ 1;
0, 0);
objc_newtext (my form, ok, "OK");
cancel = objc_item(my_ form, 0, G BUTTON,
SELECTABLE | EXIT,
NORMAL, .
14, 18, 6, 1,
.0, 0);
objc_newtext (my form, cancel, "CANCEL");

/* The form is now ready to use */

form_center(my form, &x, &y, &w, &h);
form dial (FMD_START, 0,0,0,0, x, y, w ,h);
objc_draw(my form, 0, 2, x, y, w, h);
if (form do(my form, find text) == ok)
{ /* clicked ok button */
}
else
{ /* must have clicked cancel */

}

I 7 Section 6 — Obiject library AES-133
6.18 Initialize Editable Text Object objc_tedinfo

I Initialize Editable Text Object is used to set up the TEDINFO structures

describing objects of type G_FTEXT or G_FBOXTEXT added to a dialog
form created using objc_create (section 6.16). This function is not part
of the original Digital Research bindings.

6.18.1 Definition
l The Prospero C definition of Initialize Editable Text Object is :

vnid objc_tedinfo (OBJECT *form, WORD object,
const char *ptext,
l const char *template,
const char *valid
WORD font, WORD justify);

I 6.18.2 Purpose

This function is used after adding an object of type G_FTEXT or
l G FBOXTEXT to a dialog form. These object types are editable text fields
which can be filled by the user. The objects are described by an additional
structure of type TEDINFO, whose address is contained in the object
header’s ob_spec field — these structures are described in the introduction
l to section 6. When objc_item (section 6.17) is used to add one of these
objects, memory is allocated for the TEDINFO structure, and the
te color and te thickness fields set up from the parameters glven

l However before the form can be used the contents of the other fields in the
TEDINFO structure must be set up — this can be achieved using this
function.

I This function is not provided in the original Digital Research bindings.

7 AES-134

Section 6 — Object library

6.18.3 Parameters

Parameter Type of

Parameter description

name parameter Function of parameter

form OBJECT * Dialog form being created
The tree pointer of the tree concerned.

object WORD Editable text object to be set up
The index of the object to be initialized, as
returned by objc_item when the object was
added to the form.

ptext const char* Initial text string
The initial contents of the editable text object.
This is the portion which the user can change
when interacting with the form. If the object is
to be initially empty, an empty string " " should
be passed.

template constchar* Text template
The template into which the text is to be entered.
This should contain an underscore character for
every editable position — see the introduction to
section 6 for more details.

valid constchar* Validation string
A string indicating which characters will be
acceptable in each editable position of the
template — see the introduction to section 6 for
more details.

font WORD Required font

This parameter is copied into the te font
field, which indicates whether the text is to be
displayed in the small font used for icons (font
=5) or in the standard system font (font = 3).

l

AES-135

[7 Section 6 — Object library
justify WORD

6.18.4 Function Result

I There is no function result.

l 6.18.5 Example
See section 6.17.5.

Required justification

This parameter is copied into the te just
field, which indicates whether the text is to be
displayed left justified (justify = 0), right
justified (justify = 1) or centred (justify
= 2). Centre justification of editable text object
doesn’t appear to work correctly under some
versions of GEM.

7/ AES-136 Section 7 — Form library
7 FORM LIBRARY

This section contains descriptions of the Form Library functions, in the
following sub-sections.

Section Function description Binding name
7.1 Process Form form do

7.2 Reserve Screen For Dialog form dial
1.3 Draw Alert Box form alert
7.4 Draw Error Box form error
7.5 Center Dialog On Screen form center
7.6 Check Form Keyboard Input form_ keybd
7.7 Check Form Button Input form button

The form library routines are concerned with the use of object trees (as
described in the introduction to section 6) to obtain information or selections
from the user. Object trees used for this purpose are known as forms, as
they act like paper forms which the user has to fill in; they are also known
as dialog boxes: particularly simple forms which simply request one of
several possible responses to a question.

The majority of forms that an application will use can be easily specified
using the object trees described in section 6, and the manner in which the
various objects are to interact with the mouse can be completely specified
using the ob_flags and ob_state fields of the object headers. In this
case, the user interaction with the form can be done using the function
form_do, described in section 7.1. This handles such things as radio
buttons, selecting and editing text fields, selecting buttons, and returning
when an EXIT or TOUCHEXIT object is selected. However, should the
application require more sophisticated forms — for example, slider bars that
can be dragged to select a value, forms within a window that can be moved,
or forms which allow processing to continue in the background while
waiting for a user response — then the application will have to assume
control of the user’s interaction with the form.

l 7 Section 7 — Form library AES-137

Two functions are provided in GEM version 2.0 to assist the processing of
mouse clicks or key presses in selecting objects — see form keybd (section
7.6) and form button (section 7.7), but the application will still need to do a
fair amount of work. An application which performs its own form handling
should conform to the conventions used by form_do — for example the use of
the up and down arrows or tab and backtab to select the next or previous text
field to edit, and the selection of the object whose default bit is set when the
enter key is pressed. If form_keybd is used much of this will be handled
automatically. The treatment of the SELECTABLE, EXIT, TOUCHEXIT,
and RBUTTON flags should also be consistent with that described in section 6,
as performed by form_do.

In order to display and use a form, whether it is to be processed using
form_do or by the application, the following steps should be used :-

1. The form must be either created using the functions in the object library,
or loaded from a resource file, as described in section 12.

2. The coordinates of the form should be calculated and placed in the object
header of the root — for a normal form (i.e. not in a window) displayed
centrally, this can be done simply by using form center (section 7.5).

3. The portion of the screen which the dialog will occupy should be reserved
using form_dial (section 7.2). This is not necessary for a form
displayed in a window. The screen area can be determined either from the
values returned by form_center (section 7.5) if used, or by inspecting
the coordinates in the root object’s header record.

4. The object tree describing the form should be drawn, using ocbjc_draw
(section 6.3).

5. The form should be processed by calling form_do (section 7.1) or by the
application’s own code, until an exit condition is satisfied.

6. The screen area reserved under step 3 must be released using
form dial, causing any screen areas obscured to be redrawn (or
redraw messages sent to the owners of any windows affected).

For simple dialogs, an alert or error box may be a more suitable option. The
advantage of these is that they do not cause redraw messages to be issued, as the
area obscured is saved to a buffer before the alert box is drawn, and restored
afterwards. The alert box is therefore removed from the display very much
faster than a dialog which obscures windows would be. The price to be paid for
this is the lack of flexibility compared to the dialog box. See sections 7.3 and
7.4 for information on how to use alert and error boxes.

7 AES-138 Section 7 — Form library

7.1 Process Form form_do

Process Form is used to process a form or dialog box, taking control of all
mouse interaction with buttons and selection and editing of editable text fields.
The application is suspended until the user exits from the form by clicking on
an exit button, or pressing return if a button is marked as default.

7.1.1 Definition

The Prospero C definition of Process Form is :

WORD form do (OBJECT *form, WORD start);

7.1.2 Purpose

This function is used by an application to allow a user to interact with a dialog
box — editing text, selecting buttons and radio buttons and so on — and returns
when the user clicks on an exit button (or presses Enter if there is an object
with its DEFAULT bit set in the ob_flags field). All interaction is managed
by GEM AES without intervention by the application.

The parameter start gives the index of an editable text field which is to be
the first one to be edited. The application should pass a zero here if there are no
editable text fields.

The function returns the index of the object which caused form_do to return —
usually an exit button which was clicked on. This object will have its
SELECTED state bit set, which will cause it to be drawn highlighted the next
time the form is drawn. It is therefore a good idea for the application to reset
this bit immediately, using objc_change (section 6.8), objc_newstate
(section 6.10) or directly as shown in the example. Other objects in the tree
may have their SELECTED bits set if the user clicked on them while
interacting with the form — these will normally be tested by the application to
discover what the user requested. Unless the application wants these objects to
be pre-selected the next time the object is drawn, it is a good idea to reset the
state of all objects in the tree.

The use of form_do for interaction with forms is recommended wherever
possible, as it greatly simplifies the task. Should the facilities available be
inadequate, or should the application wish to continue background processing
while awaiting user response, the form must be processed by the application -
see the descriptions of the objc_edit (section 6.7), form keybd (section
7.6) and form button (section 7.7) for an indication of how this can be
done.

I 7 section 7 — Form library

™

AES-139

7.1.3 Parameters

Parameter Type of

Parameter description

name parameter Function of parameter
form OBJECT * Tree describing form
The pointer to the array containing the tree
describing the form which is to be processed.
start WORD Index of first editable text field

7.1.4 Function Result

The index within the form of an editable text
field which is to be made active when the form
is displayed. A value of zero can be used if there
are no editable text fields.

The value returned is the object index of the object which caused the form to
exit. This will be an object (normally a button) with its EXIT or TOUCHEXIT
bit set in the ob_flags field, which the user selected by clicking on it or (if
the object has its DEFAULT bit set) pressing Return.

7 AES-140 Section 7 — Form library

7.1.5 Example

#define NORMAL 0 /* In AESBIND.H file */
#define buttonl 10 /* Sample constants .. */
#define button2 11 /* .. provided by resource editor */

#define button3 12
#define okbutt 20
#define cancel 21

OBJECT *form;
WORD exit object, blstate, b23state;

/* NB the code to reserve screen space and draw the
form is not shown - see form dial in section 7.2 */

/* Interact with a form */
exit object = form do(form, 0);

/* Reset state of exit button */
form[exit object].ob_state = NORMAL;

if (exit_object == okbutt)
{ /* User clicked ok - read form */
blstate = objc_state(form, buttonl);
objc_newstate (form, buttonl, NORMAL); /* Unselect it */

/* Buttons 2 and 3 are radio buttons -
see which one is set */
b23state = (objc_state (form, button2) != NORMAL) ;
/* Don't reset state - leave selected for next time*/
}
else /* User clicked cancel */
{ /* Undo all form changes */
objc _newstate (form, buttonl, NORMAL);
if (b23state)
{ objc_newstate (form, button2, SELECTED);
objc _newstate (form, button3, NORMAL);
}
else
{ objc_newstate (form, button2, NORMAL);
objc_newstate (form, button3, SELECTED) ;
}

l 7 Section 7 — Form library AES-141
7.2 Reserve Screen For Dialog form_dial

Reserve Screen For Dialog is used to signal that a portion of the screen is about

l to be used for a dialog box, or to release that portion of the screen. In GEM
version 1.1, it can also be used to draw a zoom box expanding or shrinking —
these features have been removed from GEM version 2.0.

7.2.1 Definition

l The Prospero C definition of Reserve Screen For Dialog is :

WORD form_dial (WORD dtype,
! WORD 1x, WORD ly, WORD lw, WORD 1lh,
WORD x, WORD y, WORD w, WORD h);

l 7.2.2 Purpose

This function is used by an application to reserve or free a portion of the

screen for use by a dialog box. In GEM version 1.1 it can also be used to draw
l expanding or shrinking zoom boxes to make a dialog seem to be appearing

from a particular point. These have been removed from GEM version 2.0, but

see the functions xgrf_stepcalc and xgrf_2box in section 14 for how to
i draw zoom boxes. When form_dial is used to free a portion of the screen, it

will cause a redraw message to be sent to the application which owns any
windows which were covered by the specified rectangle, and the desktop
background will be redrawn where it is not covered by windows. This feature
can be used to mark an area of the screen as ‘dirty’ and cause it to be redrawn,
even if a dialog has not been produced.

]

7.2.3 Parameters

i Parameter Type of Parameter description
name parameter Function of parameter
dtype WORD Action required
i The required action the function is to perform,
as follows :-
] 0 (FMD_START)

Reserve screen space for a dialog box
whose size is given by the parameters
{ x, v, w, and h.

7 AES-142

Section 7 — Form library

15¢

1w
1h

o N

WORD
WORD
WORD
WORD

WORD
WORD
WORD
WORD

1 (FMD_GROW)
Draw box expanding from that
described by the parameters 1x, 1y,
1w and 1h to that described by the
parameters x, y, w, and h. (Not
available in GEM version 2.0)

2 (FMD_SHRINK)
Draw box shrinking from that
described by the parameters x, v, w,
and h to that described by the
parameters 1x, 1y, 1w and 1h. (Not
available in GEM version 2.0)

3 (FMD_FINISH)
Free the screen space described by the
parameters x, vy, w, and h, and cause it
to be redrawn by the screen manager
or the owner of any windows it
covers.

The constants named above are defined as
macros in the file AESBIND.H.

Small box X coordinate
Small box Y coordinate
Small box width
Small box height

The coordinates and size of the little box for
expanding from and shrinking to (GEM version
1.1). In GEM version 2.0, these parameters are
reserved, and values of zero should be passed.

Dialog box X coordinate
Dialog box Y coordinate
Dialog box width
Dialog box height

The coordinates and size of the screen area to be
reserved or freed, or (in GEM version 1.1) of
the large box to be expanded to or shrunk from.

l 7 Section 7 - Form library AES-143

7.2.4 Function Result

l The value returned will be zero if an error occurred, or greater than zero if no
error was detected. '

I 7.2.5 Example
#define NORMAL 0 /* In AESBIND.H */
] OBJECT *form;

WORD exit object, x, y, w, h;

l form center (form, &x, &y, &w, &h);
/* Reserve screen space for dialog */
form dial(0, 0, 0, 0, 0, %, y, w, h);

‘ /* Draw the form */
objc _draw(form, 0, 32767, x, y, w, h);
/* Process the form */
l exit_object = form do(form, 0);
/* Reset exit button */
form[exit object].ob state = NORMAL;

1 /* Release space, to cause redraws */
form dial(3, 0, O, 0, 0, %, y, w, h);

l /* Now proceed to check form etc. */

7 AES-144 Section 7 — Form library
7.3 Draw Alert Box form_alert

Draw Alert Box is used to place an alert box on the screen, containing one of
three icons, up to five lines of text, and up to 3 exit buttons which the user may
select among.

7.3.1 Definition
The Prospero C definition of Draw Alert Box is :

WORD form alert (WORD defbut, const char *astring) ;

7.3.2 Purpose

This function is used by an application to draw an alert box, wait until the user
selects a button, then return, restoring the area covered by the box and
indicating which button the user selected. For many interactions with the user,
an application does not need the more sophisticated features available in a
dialog; the alert box is easier to use, faster, and does not cause redraw messages
as the area under the alert is saved by GEM before the alert is drawn, and
restored afterwards.

An alert box is a very simple dialog with an icon (optional), up to 5 lines of
text, and up to three exit buttons, no more than 20 characters in length. One of
the buttons may be nominated as the default button using the parameter
defbut. If there is a default button, pressing Return or Enter will have the
same effect as selecting that button with the mouse. The function result
indicates which button was selected.

The format of the alert is defined by the the null-terminated string pointed to
by the parameter ast ring, which consists of 3 parts, each enclosed by square
brackets. The first part contains a digit in the range 0 to 3 indicating which
icon is to be used in the alert :-

0 —no icon

1 — NOTE icon
2 — WAIT icon
3 - STOP icon

The second part contains the text to be displayed in the alert. There may be up
to 5 lines of text, each of up to 40 characters, separated by vertical bars (|).

The third part contains the names of the buttons — there may be up to 3, each
containing up to 20 characters, and again separated by vertical bars.

l

7 Section 7 — Form library

AES-145

7.3.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

defbut WORD

astring const char *

7.3.4 Function Result

Default button

The default exit button, which will be selected if
Return or Enter is pressed. A value of zero
indicates that there is to be no default, and
pressing Return or Enter will have no effect. A
value in the range 1 to 3 gives the position in the
list of buttons of the default button.

Alert definition string

The string containing the definition of the alert,
as described above in 7.3.2. Any string which
does not conform precisely to the above
description is liable to cause GEM to fall over in
a heap.

The value returned is in the range 1 to 3, and gives the position in the alert’s list
of buttons of the button which the user selected.

7.3.5 Example

form alert(1l,"([1][This is an alert][OK 1");
/* OK button is default, NOTE icon */

if (form_alert (2:;

exit (0);

" [O] "
"[Do you want | to continue ?]"
"[YES | NO 1")

2)

/* NO button is default, no icon */

y AES-146 Section 7 — Form library
7.4 Draw Error Box form error

Draw Error Box is used to place an error box on the screen, which allows
operating system errors to be reported in a GEM type manner. The form of
the error box is determined by GEM AES depending upon the error number.

7.4.1 Definition

The Prospero C definition of Draw Error Box is :

WORD form_error (WORD errnum) ;

7.4.2 Purpose

This function is used by an application to report operating system errors to the
user in the form of GEM alert boxes describing the error, and inviting the user
to take appropriate action. Some errors will be recognised and a useful
description given, others will simply be reported as an error number with an
OK box. Some errors may allow the user a choice of responses — the response
chosen can be determined from the function result.

7.4.3 Parameters

Parameter Type of Parameter description
name parameter Function of parameter
errnum WORD Error number

The operating system error code.

7.4.4 Function Result

The value returned will be the number of the exit button which the user

selected in the error box. The meaning will vary depending upon the error
number.

7.4.5 Example

WORD dos_err code;

if (dos_err code)

form error(dos_err code);
else

/* no error ... */

l 4 Section 7 — Form library AES-147
7.5 Center Dialog On Screen form_center

Center Dialog on Screen is used to calculate the rectangle which a dialog will

I occupy when placed in the center of the screen, and sets the ob_x and ob_y
fields in the dialog’s root object header so that the dialog will be displayed in
this position.

7.5.1 Definition

I The Prospero C definition of Center Dialog on Screen is :

WORD form_center (OBJECT *tree,
WORD *pcx, WORD *pcy,
l WORD *pcw, WORD *pch);

[7.5.2 Purpose

This function is used by an application to calculate the coordinates of a dialog
box, and to cause the dialog to be displayed in the center of the screen. It will

l normally be used to obtain the values to use for form_ dial (section 7.2)
when a dialog box is to be drawn. If the application wishes to display the dialog
other than in the center, it must calculate the screen offsets itself, and place

l them in the ob_x and ob_y fields of the root object header. In order to do this
in a manner that will be portable to all devices of whatever resolution, it is
often simpler to use form_ center to place the form in the center, then adjust

I the coordinates relative to the center, perhaps just altering the ob_y field to
display the dialog nearer the top or bottom of the screen.

7 AES-148 Section 7 — Form library

7.5.3 Parameters

Parameter Type of Parameter description
name parameter Function of parameter
tree OBJECT * Dialog tree

The tree containing the dialog to be centered.

pcx WORD * Dialog X coordinate
pcy WORD * Dialog Y coordinate
pcw WORD * Dialog width
pch WORD * Dialog height

These parameters point to objects into which the
function writes the coordinates, width and
height of the centered dialog.

7.5.4 Function Result

The value returned is reserved, and is always one.

7.5.5 Example

OBJECT *my_ form;
WORD x, y, w, h;

/* Center box */
form center(my form, &x, &y, &w, &h);

/* Move it up a bit - note that my form points to
the root object */

y /= 2;

my form->ob y = y;

/* Draw it */
form dial(0, 0, 0, 0, 0, %, y, W, h);
objc_draw(my_ form, 0, 32767, x, y, w, h);

I / Section 7 — Form library AES-149
7.6 Check Form Keyboard Input form_keybd

l _ Check Form Keyboard Input is used by applications which are doing their own

form processing rather than using form_do (see section 7.1). It checks the

given input from the keyboard to see whether it is one of tab, backtab,

uparrow, downarrow or return, which have special effects on forms, and

[returns the index of the object selected by the character typed. It is not
available in GEM version 1.1.

l 7.6.1 Definition
The Prospero C definition of Check Form Keyboard Input is:

WORD form keybd (OBJECT *form,
WORD obj, WORD nextobj, WORD inkey,

l WORD *newobij, WORD *outkey):;

l 7.6.2 Purpose
This function is used by an application to check whether the user used one of
the special form handling keys tab, backtab, uparrow, downarrow or return,

l and to discover what the effect of that key should be on the form that the
application is processing. It is only used when an application is doing its own

form processing rather than using form_do (section 7.1), perhaps because it
wants some special features in the form, or it wants to continue processing
l while waiting for input. Its use is closely connected with that of objc_edit
(section 6.7), as its primary purpose is to see which editable text object the user
has selected. This function is not provided in GEM version 1.1, where it is up
] to the application to decide how to handle these keys. A fairly primitive
example of how this could be done is given in 6.7.5.

7 AES-150

Section 7 — Form library

Parameters

Parameter Type of

name

parameter

Parameter description
Function of parameter

form

obj

nextobj

inkey

newobj

outkey

OBJECT *

WORD

WORD

WORD

WORD *

WORD *

Dialog tree

The tree containing the dialog being processed.

Current editable text object

The object index of the current editable text
object. This will be used when calculating which
editable text object should become current as a
result of the key press.

Reserved

Reserved for future use — a value of zero should
be passed.

Key press to be checked

The key stroke which has been returned by
evnt multl(wcnm146)orevnt keybd
(section 4.1), and which is to be checked for its
effect on the form.

New current object

This parameter points to the object which
returns the object index of the new current
object, after the key press has had its effect. This
will usually be an editable text field, unless the
key was Return or Enter, in which case the
object with its DEFAULT bit set will be
returned (and will be displayed highlighted on
the screen). Note that this function does not
cause the new text to be initialized or the old one
to be exited — this should be done using
objc_edit, as in the example.

Key press value returned

This parameter points to an object which will
return zero if the key press was one of the
special form handling keys, otherwise it will
return the key code ready to pass to
objc_edit.

I y Section 7 — Form library AES-151
7.6.4 Function Result

The result returned is one if the key tested did not cause an exit condition to be

I satisfied, or zero if the key was Return or Enter and an object with its
DEFAULT bit set was found. The index of the object will be returned in
newobj.

7.6.5 Example

l #define textlobj 20
#define text2obj 24
#define text3obj 28
/* Sample constants provided by resource editor when
' the form was created */

OBJECT *form,
l WORD current, new_obj, key, pos;
int not_ exit;

current = textlobj;
I /* Initialize first editable text field */
objc_edit (form, current, 0, &pos, ED_INIT);

do
l { key = evnt_keybd();
not_exit = form keybd(form, current, O,
key, é&new obj, &key);
[if (key == 0)

{ /* Remove cursor from current text field */
objc_edit (form, current, key, &pos, ED_END);
current = new obj;

l if (not_exit)
/* Initialize new text field */
objc_edit (form, current, key, &pos, ED INIT);

}
l else

/* Process the character typed */

objc_edit (form, current, key, &pos, ED CHAR) ;
l } while (not exit);

/ AES-152 Section 7 — Form library
77 Check Form Button Input form_button

Check Form Button Input is used by applications which are doing their own
form processing rather than using form_do (see section 7.1). It waits for a
specified number of mouse clicks and uses those mouse clicks to determine
which the object selected was, altering the screen display accordingly. It is not
available in GEM version 1.1.

7.7.1 Definition
The Prospero C definition of Check Form Button Input is :

WORD form button (OBJECT *form,
WORD obj, WORD clicks,
WORD *nextobj);

7.7.2 Purpose

This function is used by an application to handle mouse interaction with a
form. The current object in the form is passed as a parameter, and the number
of clicks for which the function is to wait. When the clicks have been received,
the function returns, giving the index of the object that was selected by the
mouse click (and displaying it as selected) and indicating whether it has the
EXIT or TOUCHEXIT bit set in its ob_flags field.

According to the GEM documentation, only editable text objects can be

selected by this routine, which makes it of very little use, because since it waits
for a mouse click before returning, key presses will not be detected.

7.7.3 Parau.cieis

Parameter Type of Parameter description
name parameter Function of parameter
form OBJECT * Dialog tree

The tree containing the dialog being processed.

I Z Section 7 — Form library AES-153
obj WORD Current editable text object

l The object index of the current editable text
object. This will be used when calculating which
editable text object should become current as a

result of the button click.

clicks WORD Number of clicks
l The number of clicks for which the application
is waiting.
nextobj WORD * Object selected

Points to a variable which returns the index of
the object the user clicked on, or zero if the
l object is hidden, disabled or not editable.

7.7.4 Function Result

I The result returned is zero if the object selected has its EXIT or TOUCHEXIT
bit set, otherwise one.

7.7.5 Example

' OBJECT *form;
WORD current, result;

/* Get new current object after a click */
l result = form button(form, current, 1, ¤t);

7 AES-154
8 GRAPHICS LIBRARY

This section contains descriptions of the Graphics Library functions, in the
following sub-sections.

Section 8 — Graphics library

Section Function description Binding name

8.1 Draw Rubberbanded Box graf rubbox

8.2 Drag Box Within Rectangle graf dragbox

8.3 Draw Moving Box graf mbox

8.4 Draw Zoom Boxes graf growbox
graf shrinkbox

8.5 Track Mouse In Box graf watchbox

8.6 Track Sliding Box graf slidebox

8.7 Obtain Workstation Handle graf_handle

8.8 Set Mouse Form graf mouse

8.9 Return Mouse State graf mkstate

The functions in the graphics library are concerned with miscellaneous
graphics drawing and mouse activities. They are based upon GEM VDI
functions, which are described further in the VDI manual. Where similar
functions are provided in both GEM AES and GEM VDI, applications which
use the AES should use the AES functions rather than the VDI functions.

Many of the routines in this section could be used by an application which is
handling a user’s interaction with a complicated form (e.g. graf slidebox,
graf watchbox), or one which allowed icons to be selected and moved
around the desktop or window area (e.g. graf rubbox, graf dragbox,
graf_slidebox). See the relevant sub-section for further details.

l / Section 8 — Graphics library AES-155
8.1 Draw Rubberbanded Box graf_ rubbox

Draw Rubberbanded Box is used to allow the user to select an area of the
| screen by ‘rubberbanding’ a box around it. This means that the box drawn is
constantly updated whenever the mouse is moved so that the mouse position is
at the bottom right corner (the top left corner is fixed). In GEM version 1.1

l this function was called graf rubberbox, but is otherwise unchanged. The
Prospero C function is called graf rubbox for both versions to aid
portability.

l 8.1.1 Definition

The Prospero C definition of Draw Rubberbanded Box is :

WORD graf rubbox (WORD xorigin, WORD yorigin,
WORD wmin, WORD hmin,
l WORD *pwend, WORD *phend);

8.1.2 Purpose

l This function is used by an application to allow the user to select an area of the
screen by dragging a rubberbanded box around it. The application should call
this function when it detects the leftmost mouse button being pressed, passing

l the coordinates of the mouse at the time. The function will track the mouse
position and redraw the rectangle as necessary until the mouse button is
released, and return the width and height of the box the user selected. The

l minimum width and height that the box may take are specified by the
application in the parameters wmin and hmin.

] 8.1.3 Parameters
Parameter Type of Parameter description
name parameter Function of parameter
l xorigin WORD X coordinate of box
yorigin WORD Y coordinate of box
[The x and y coordinates of the top left hand
corner of the box, which remains fixed
throughout the rubberbanding operation.
I wmin WORD Rubber box minimum width
hmin WORD Rubber box minimum height
l The minimum width and height which the

rubberbanded box is allowed to take on.

7 AES-156 Section 8 — Graphics library

pwend WORD * Rubber box final width
phend WORD * Rubber box final height

The final width and height of the rectangle when
the mouse button was released is returned in the
objects pointed to by these parameters. The
values will be greater than or equal to the
minimum width and height passed in wmin and
hmin.

8.1.4 Function Result

The value returned will be zero if an error occurred, or greater than zero if no
error was detected.

8.1.5 Example

WORD x, y, w, h, dummy;
OBJECT *the_ form;

/* Wait for left hand button down */
evnt button(l, 1, 1, &x, &y, &dummy, &dummy):;
if (objc_find(the form, 0, 2, x, y) != -1)

{ /* User selected an object */

}

else
{ /* Clicked in space - select area */
graf rubbox(x, y, 10, 10, &w, &h);
/* x, y, w, h give rectangle user selected */

l / Section 8 — Graphics library AES-157
8.2 Drag Box Within Rectangle graf_dragbox

Drag Box Within Rectangle is used to allow the user to select the position of a
] box on the screen, within constraints defined by the application. See also
graf slidebox in section 8.6.

8.2.1 Definition
The Prospero C definition of Drag Box Within Rectangle is :

WORD graf dragbox (WORD w, WORD h, WORD sx, WORD sy,
WORD xc, WORD yc, WORD wc, WORD hc,
I WORD *pdx, WORD *pdy) ;

8.2.2 Purpose

l This function is used by an application to allow the user to position a box
anywhere within a specified area of the screen. The box is drawn with a dotted
line as it is moved, so that the user gets visual feedback of the position being

l selected. The function first waits until the leftmost mouse button is depressed
(this may already be the case). The offset of the mouse relative to the box to be
dragged is then calculated, and as the mouse is moved, the box is drawn in the

I position required to keep this offset the same (though it will never move
outside the bounding rectangle). When the mouse button is released, the final
coordinates of the box are returned in the objects pointed to by pdx and pdy.

7 AES-158 Section 8 — Graphics library
8.2.3 Parameters

Parameter Type of Parameter description

name parameter Function of parameter

w WORD Width of box to be dragged

h WORD Height of box to be dragged
The width and height of the box which the user
is to drag.

sX WORD Initial X coordinate of box

sy WORD Initial Y coordinate of box

The initial x and y coordinates of the box which
the user is to drag. .

xc WORD Bounding box X coordinate
yc WORD Bounding box Y coordinate
wC WORD Bounding box width
hc WORD Bounding box height

The coordinates, width and height of the
bounding box within which the box being
dragged is constrained.

pdx WORD * Final X coordinate of box
pdy WORD * Final Y coordinate of box

Used to return the x and y coordinates of the
box when the user released the mouse button.

8.2.4 Function Result

The value returned will be zero if an error occurred, or greater than zero if no
error was detected.

l 7 Section 8 - Graphics library | AES-159
8.2.5 Example

[/* A simple example of how an application might allow
the user to move objects around the screen. The code
to remove and redraw the object is not included */

I WORD x, y, w, h, x1, yl, dummy;
OBJECT *the_ form;

/* Wait for left hand button down */
l evnt button(l, 1, 1, &x, &y, &dummy, &dummy) ;

obj = objc_find(the_form, 0, 1, x, y)
l if (obj > 0)
{ /* User selected a child of the root */
objc_offset (the_form, obj, &x, &y):
w = the form[obj] ob_w;
l h = the form[obj]. ob_h
/* x, y, W, h are object area*/

l /* Get new position within root area */

graf_dragbox(w, h, x, y,
the form->ob_x, the_form- >ob vy,

[the form->0b W, the form->ob_h,
&xl &yl);
x = x1 - the form->ob_x;

I y yl - the form->o0b Y
/* Now set new object position */
the form[obj]->ob_x = x;

[the form[obj]->ob_y Yi

7 AES-160 Section 8 — Graphics library
8.3 Draw Moving Box graf mbox

Draw Moving Box is used to draw the outline of a box moving from one
position to another, without changing size. This function was known as
graf_movebox in GEM version 1.1, but is otherwise unchanged. The
Prospero C function is called graf mbox for both versions, to aid portability.

8.3.1 Definition

The Prospero C definition of Draw Moving Box is :

WORD graf mbox(WORD w, WORD h, WORD srcx, WORD srcy,
WORD dstx, WORD dsty) ;

8.3.2 Purpose

This function is used by an application to draw an image of a box moving from
one screen position to another. When the function has finished, the screen
display will be unchanged. This might be used to give a little animation when a
user requests that an object be moved from one point to another, and provide a
little more visual indication of what has happened than simply removing the
object from one position and redrawing it in another.

I

I 7 Section 8 - Graphics library AES-161

8.3.3 Parameters

l Parameter Type of Parameter description
name parameter Function of parameter
W WORD Width of moving box
l h WORD Height of moving box
The width and height of the moving box.
l srcx WORD Initial X coordinate of box
srcy WORD Initial Y coordinate of box
I The initial x and y coordinates of the moving
box.
dstx WORD Final X coordinate of box
l dsty WORD Final Y coordinate of box
The final x and y coordinates of the moving
I box.
I 8.3.4 Function Result

The value returned will be zero if an error occurred, or greater than zero if no
error was detected.

8.3.5 Example

l WORD x1, yl, x2, y2;

/* Set up start and end positions in x1, y1l, x2, y2 */

/* Draw the moving box */
l graf mbox (20, 20, x1, yl, x2, y2);

7/ AES-162 Section 8 — Graphics library

8.4 Draw Zoom Boxes graf growbox
graf_ shrinkbox

These functions are used to draw the outlines of a sequence of boxes expanding
or shrinking from one rectangle to another. These might be used to give a user
visual feedback about, for example, ‘hich object’s selection had caused a
dialog or window to be opened. How: ‘er, such effects are time consuming,
and can be irritating to users, so a frien. y application might provide a way of
disabling them. All such animation effects have been removed from the GEM
Desktop in version 2.0, in the interests of both speed and space, and these
functions are not supported by GEM version 2.0 (though see
xgrf_stepcalc and xgrf 2box in section 14).

8.4.1 Definition

The Prospe~y C definitions of Draw Zoom Boxes are :

WORD g:af growbox (WORD sx, WORD sy, WORD sw, WORD sh,
WORD fx, WORD fy, WORD fw, WORD fh);

WORD graf shrinkbox (WORD fx, WORD fy, WORD fw,WORD fh,
WORD sx, WORD sy, WORD sw,WORD sh);

8.4.2 Purpose

These functions are used by an application to draw an image of a box
expanding or shrinking from one rectangle to another, so that dialogs or
windows can seem to appear from a particular point. Use graf_growbox if
the final box is larger than the initial box, otherwise use gra f shrinkbox.

These functions are not provided in GEM version 2.0.

I 7/ Section 8 — Graphics library AES-163

8.4.3 Parameters

[parameter Type of Parameter description
name parameter Function of parameter
sx WORD X coordinate of starting box

l sy WORD Y coordinate of starting box
swW WORD Width of starting box
sh WORD Height of starting box

I The initial x and y coordinates and size of the

expanding or shrinking boxes.

I fx WORD X coordinate of finishing box
fy WORD Y coordinate of finishing box
fw WORD Width of finishing box

[fh WORD Height of finishing box

The final x and y coordinates and size of the
expanding or shrinking boxes.

8.4.4 Function Result

l The value returned will be zero if an error occurred, or greater than zero if no
error was detected.

l 8.4.5 Examplie

WORD ox, oy, WX, Wy, Ww, wh;
OBJECT *the_tree;
[WORD obj_selected;
WORD my window;
WORD animating;

l objc_offset (the tree, obj selected, &ox, é&oy);
if (animating)
/* Make window appear to grow out of object */
l graf growbox(ox, oy, 10, 10, wx, wy, ww, wh);
wind open(my window, wx, wy, ww, wh);

wind close(my_ window) ;
l if (animating)
/* Make window appear to shrink back into object */
graf shrinkbox(ox, oy, 10, 10, wx, wy, ww, wh);

7 AES-164 Section 8 — Graphics library
8.5 Track Mouse In Box graf watchbox

Track Mouse In Box is used to track the mouse as it moves in and out of an
object box, and alter the object’s ob_state field (and therefore its
appearance) accordingly. This is used for example when processing a form — if
the user clicks in a box, the mouse can be tracked in and out of the button until
the mouse button is released, to give the user a chance to cancel the selection by
moving out of the box before releasing the button.

8.5.1 Definition
The Prospero C definition of Track Mouse In Box is :

WORD graf watchbox (OBJECT *tree, WORD obj,
WORD instate, WORD outstate);

8.5.2 Purpose

This function is used by an application to change the state and appearance of an
object (usually a box) according to whether the mouse is inside or outside the
box. The application should call this when the mouse button is down, usually
inside the box in question. The function will set the state and appearance of the
box to either instate or outstate depending on whether the mouse is
inside or outside the box, and return when the mouse button is released,
indicating whether the button was inside or outside the box at the time. See
section 6 for details of the ob_state field, and suitable values for instate
and outstate.

l

l Z Section 8 — Graphics library

AES-165

8.5.3 Parameters

I Parameter Type of Parameter description
name parameter Function of parameter
tree OBJECT * Tree containing object

l obj WORD
[instate WORD
l
l
l outstate WORD

l 8.5.4 Function Result

The tree containing the object in question.

Object being tracked

The index within the tree of the object being
tracked.

State when mouse in box

The value of the object’s ob_state field when
the mouse is inside the box. Typically this will
be the same as the original state of the object
when the mouse click was detected, except with
the selected bit set or toggled, depending on
what sort of object it is.

State when mouse out of box

The value of the object’s ob_state field when
the mouse is outside the box. Typically this will
be the original state of the object when the
mouse click was detected.

The result is one if the mouse was inside the box when the button was released,

l otherwise zero.

7 AES-166 Section 8 — Graphics library
8.5.5 Example

OBJECT *form;
WORD mx, my, obj, dummy;

while (1)
{ /* Wait for 1 click of left hand button */
evnt button(l, 1, 1, &mx, &my, &dummy, &dummy);

/* Search form to see where user clicked */
obj = objc_ find(form, 0, 5, mx, my);

if (obj == -1)
{ /* outside form altogether - beep */

}
else
{ WORD flags = objc flags(form, obj),
state objc_state(form, obj);

Il

if (flags & TOUCHEXIT)
/* Exit immediately if TOUCHEXIT set */
break;

/* If it's selectable, track until button up */
if (flags & SELECTABLE)
if (graf watchbox(form, obj,
state ~ SELECTED,
state))
/* Button released within object */
if (flags & EXIT)
break;

I / Section 8 — Graphics library AES-167
‘ 8.6 Track Sliding Box graf_slidebox

Track Sliding Box is used to track the position of one box inside another box as
I the mouse is moved, in the same way as the slider bars of a window work.

l 8.6.1 Definition
The Prospero C definition of Track Sliding Box is :

i WORD graf slidebox (OBJECT *tree,
WORD parent, WORD obj, WORD isvert);

I 8.6.2 Purpose

This function is used by an application to allow a user to set the position of a
box within another box either vertically or horizontally, by moving the mouse
I and releasing the button when the sliding box is in the required position. The
application should call this function when the mouse button is down; GEM
AES will note the position of the mouse relative to the sliding box, and as the
l mouse is moved the box will move within its constraining box to maintain this
offset as far as possible. When the mouse button is released, the function
returns the relative position of the sliding box within its constraining box. Both
the sliding box and its constraining box are objects in the same tree, the
I constraining box being the parent of the sliding box.

The slider bars of GEM windows provide a good example of how such sliding
l boxes operate, though they can also be used in forms (if the application is
prepared to process the forms itself) or within windows etc.

l 8.6.3 Parameters
Parameter Type of Parameter description
[name parameter Function of parameter
tree OBJECT * Tree containing box objects
) The tree containing the parent and sliding
' boxes.
I parent WORD Index of parent box

The index within the tree of the parent box,
which defines the range of movement of the
[sliding box.

7 AES-168 Section 8 — Graphics library
obj WORD Index of sliding box

The index within the tree of the sliding box,
which should be a child of the parent box.

isvert WORD Vertical flag

A flag indicating whether the movement is to be
vertical (isvert = 1) or horizontal (isvert
=0).

8.6.4 Function Result

The result returned is a WORD in the range 0 to 1000 giving the relative
position of the slider within the parent — 0 means at the top or left, while 1000
means at the bottom or right.

8.6.5 Example

#define slider 20
#define parent 19
/* Indices of slider and parent in form,
perhaps provided by resource editor */

OBJECT *form;
WORD mx, my, dummy, obj selected, val;

/* Wait for 1 click of left hand button, ignore keys */
evnt button(l, 1, 1, &mx, &my, &dummy, &dummy);

/* Search form to see where clicked */
obj selected = objc_find(form, 0, 5, mx, my);

if (obj selected == slider)
/* Clicked on slider, so slide it */
val = graf slidebox (form, parent, slider, 1);

| 7 Soction 8 — Graphics library AES-169

8.7 Obtain Workstation Handle graf_handle
| Obtain Workstation Handle is used to discover the GEM VDI handle of the
(currently open screen workstation, to which GEM AES output is directed. The

application can use this as the handle for its own GEM VDI output to the
screen, or use it to open a virtual screen workstation for its own screen output.

l The latter is preferable, as any attributes set by the application on the virtual
workstation will not affect GEM AES’s output.

[8.7.1 Definition
The Prospero C definition of Obtain Workstation Handle is :

I WORD graf handle (WORD *pwchar, WORD *phchar,
WORD *pwbox, WORD *phbox);

8.7.2 Purpose

l This function is used by an application to discover the GEM VDI handle of the
screen workstation, so that it can open a virtual workstation and/or make GEM
VDI output calls to the screen (see the VDI Bindings manual for details). The
sizes of a character cell in the system font used in menus and dialogs, and of a
I square box large enough to hold such a character, are also returned.

I 8.7.3 Parameters
Parameter Type of “Parameter description
’ name parameter Function of parameter
pwchar WORD * Character cell width
phchar WORD * Character cell height
I Pointers to objects which return the width and
height (in pixels) of a character cell in the
system font.
I pwbox WORD * Character box width
phbox WORD * Character box height
l Pointers to objects which return the width and

height (in pixels) of a square box large enough
to hold a system font character.

7 AES-170 Section 8 — Graphics library

8.7.4 Function Result

The result returned is the GEM VDI handle of the currently open screen
workstation.

8.7.5 Example

WORD handle, dummy, 1i;
WORD work in[11], work out[57];

main ()
{ appl_init ();
handle = graf handle(&dummy, &dummy, &dummy, &dummy);
for (i = 0; i < 10; i++)
work in([i] = 1; /* Select initial attributes */
work in[10] = 2; /* Raster coords */
v_opnvwk (work in, &handle, work_out);
/* Open virtual screen workstation */

v_clsvwk (handle) ; /* must close before returning */
appl_exit ();

!

i 7 Section 8 — Graphics library AES-171

8.8 Set Mouse Form graf mouse

Set Mouse Form is used to set the mouse form to one of a set of predefined
forms, or to a user defined form, or to hide or show the mouse form.

8.8.1 Definition

The Prospero C definition of Set Mouse Form is :

WORD graf mouse (WORD m_number, WORD m_addr([]);

8.8.2 Purpose

This function is used by an application to select the mouse form, to set it to a
user defined form, or to control whether the mouse is displayed or hidden. The
predefined cursor forms are as follows :-

0 — arrow

1 — text cursor (I bar)

2 — busy cursor (hourglass or bee)
3 — hand with pointing finger

4 — flat hand with extended fingers
5 — thin cross hair

6 — thick cross hair

7 — outlined cross hair

Any cursor form other than the arrow or the busy cursor should only be used
within the active window’s work area. If an application uses one of these, it
must make an event_multi (section 4.6) or evnt mouse (section 4.3) call
to detect whenever the mouse enters or leaves the active window, and set the
cursor form appropriately.

7 AES-172

Section 8 — Graphics library

8.8.3 Parameters

Parameter Type of

Parameter description

name parameter Function of parameter
m_number WORD Mouse form required
This parameter selects the mouse form required
as follows :
0to 7— predefined mouse form as defined
above
255 - user defined mouse form,
described by structure pointed to
by the parameter m_addr
256 - hide mouse form
257 - show mouse form
Note that two consecutive calls to hide the
mouse will require two calls to show it before
the mouse reappears.
m_addr WORD[] Mouse form address

8.8.4 Function Result

If the value of the parameter m_number is 255,
this parameter should point to an array
describing the required mouse form, as
described in section 7.6 of the VDI manual. If
the value of the parameter m_number is not
255, the value of this parameter is ignored, and
NULL may be passed.

The value returned is zero if an error occurred, or greater than zero if no
error was detected.

I Z Section 8 - Graphics library AES-173
8.8.5 Example

WORD
l WORD
WORD
WORD
l WORD

X, Y, W, h; /* Work area */

mx, my; /* Mouse coordinates */
dummy ;

in window; /* a flag */

my mouse_ form[37];

/* A simple example of how to ensure that the user

] a

{

mouse form is only used when the mouse lies within

window's work area, given by the variables

X, y, w and h.

l This example uses evnt mouse for simplicity - to do
anything useful as well as keeping the mouse form
correct, evnt multi should be used - see section
4.6 */

I /* Set up mouse form first - see VDI manual */

in_window = 0;

l while (1)

/* Wait for mouse to enter or leave window */
evnt_mouse (in_window, x, y, w, h,
&mx, &my, &dummy, &dummy) ;

in window = !in_ window;
if (in_window)

/* Own mouse inside */

graf mouse (255, my mouse_form)
else

/* Arrow mouse outside */

graf mouse (0, NULL);

7 AES-174 Section 8 — Graphics library

8.9 Return Mouse State graf_mkstate

Return Mouse State is used to discover the current mouse location, the current
state of the mouse buttons, and the state of the control, shift and alt keys which
may be used to modify the interpretation of mouse behavior.

8.9.1 Definition
The Prospero C definition of Return Mouse State is :

void graf mkstate (WORD *pmx, ,WORD *pmy,
WORD *pmstate, WORD *pkstate);

8.9.2 Purpose

This function is used by an application to discover the current position of the
mouse, and the current state of its button and the shift, control and alt keys on
the keyboard.

8.9.3 Parameters

Parameter Type of Parameter description
name parameter Function of parameter
pmx WORD * Mouse X coordinate
pmy WORD * Mouse Y coordinate

These parameters point to objects which return
the x and y coordinates of the current mouse
position.

pmstate WORD * Mouse button state

This parameter points to an object which
returns the state of the mouse buttons, where
each bit represents the state of the
corresponding button. A bit value of 1 means
the button is down, while O means it is up. The
least significant bit corresponds to the button on
the left.

I 7 Soction 8 — Graphics library AES-175
pkstate WORD * Keyboard state

This parameter points to an object which

l returns the state of the shift, control and alt
keys, where each bit represents a key state
(1=key down, O = key up) as follows :-

’ bit 0 — right shift ~ mask 0x0001
bit 1 — left shift key mask 0x0002
bit 2 — ctrl key mask 0x0004

] bit3—altkey ~ mask 0x0008

[8.9.4 Function Result

There is no function result.

8.9.5 Example
I WORD mx, my, buttons, keys;

graf mouse (&mx, &my, &buttons, &keys);
if (keys & 4)
l { /* Control key is down */
}
else
{ /* Control key is up */

|)

7 AES-176 Section 9 — Scrap library
9 SCRAP LIBRARY

This section contains descriptions of the Scrap Library functions, in the
following sub-sections.

Section Function description Binding name
9.1 Read Scrap Directory scrp_ read

9.2 Write Scrap Directory scrp write
9.3 Clear Scrap Directory scrp_clear

These functions are concerned with the management of the desk scrap - this is
a mechanism for transferring data between applications by means of a set of
files on a disk. Applications should write data to a file called ‘SCRAP.*’ where
the extension indicates the form of the data in the file, in response to a user’s
cut or copy request. The data in these files may then be read by other
applications when they are requested to perform a paste operation. In order to
give greater flexibility, the application can write the data to a number of scrap
files, in different forms — all scrap files should contain the same information,
but the form depends upon the file’s extension as follows:

SCRAP.TXT - contains ASCII text strings

SCRAP.CSV - contains comma-separated values

SCRAP.DIF - contains spreadsheet data

SCRAP.GEM - a metafile containing GEM VDI images

SCRAP.IMG -a GEM VDI bit image

SCRAP.DCA - contains data in IBM Document Contents Architecture form
SCRAP.USR - contains data in OEM defined form

When the user performs a cut or copy operation, all scrap files should be
deleted from the current scrap directory (either using scrp_clear or via
Prospero C’s remove function), then the data being cut or copied is written to
the relevant scrap file or files. When a paste operation is requested, the
application should check the current scrap directory for a scrap file with a
suitable extension, and if one exists, copy the data from that to its own
workspace.

It is the responsibility of the application to read, write and create the scrap
files. The functions in the scrap library allow an application to determine
which directory is being used to hold the scrap files, or to nominate a different
directory to be used. By using these functions, all applications will use the
scrap in a consistent manner.

' / Section 9 — Scrap library AES-177
9.1 Read Scrap Directory scrp_read

of files containing desk scrap information, and (in GEM version 2.0 only) to
discover what scrap files currently exist in the scrap directory.

l Read Scrap Directory is used to discover the current directory for the storage

] 9.1.1 Definition
The Prospero C definition of Read Scrap Directory is :

WORD scrp_ read(char pscrapl]);

! 9.1.2 Purpose

This function is used by an application to discover which directory is currently

I being used to hold the desk scrap files. When performing a paste operation, the
application should check the scrap directory to see whether any of the scrap
formats it supports are available, by looking in it for a file called SCRAP.?7?,
where the extension takes one of the forms described in the introduction to

I section 9. For a cut or copy operation, the application would clear all scrap
files from the scrap directory, before writing its own scrap file or files. In
GEM version 2.0, the task of looking for an appropriate scrap file has been

l simplified, as a bit map indicating which scrap files are present is returned —
see 9.1.4 for details.

l 9.1.3 Parameters
Parameter Type of Parameter description
[name parameter Function of parameter
pscrap char(] Current scrap directory
l This parameter returns the directory

specification of the directory currently
designated as the scrap directory, in which the

l application should look for scrap files for a
paste operation, or place them for a cut or copy
operation.

Y AES-178 Section 9 — Scrap library

9.1.4 Function Result

The value returned by GEM AES is of little use in GEM version 1.1 — the
standard zero meaning error, positive meaning no error. In GEM version 2.0,
a bit map is returned indicating which scrap files are present in the directory
as follows:

bit 0 - SCRAP.CSV (comma-separated values)

bit 1 - SCRAP.TXT (ASCII text)

bit 2 - SCRAP.GEM (Metafile VDI images)

bit 3 - SCRAP.IMG (VDI bit images)

bit 4 - SCRAP.DCA (IBM Document Content Architecture)
bit 5 — SCRAP.USR (OEM defined data)

Other bits may be used in subsequent releases of GEM.

A value of —1 may be returned to indicate that no scrap directory has been
established. A value of zero indicates that a scrap directory has been
nominated, but it contains none of the above scrap files.

9.1.5 Example

char scrap_path([80];
WORD files;
FILE *tsc¢rap;

/* GEM 1.1 version */

/* User has requested a 'paste' operation */

scrp_read(scrap_path);

if (scrap path([0] != '\0")

{ strcat (scrap path, "SCRAP.TXT");

if (access(scrap path, 0)) /* SCRAP.TXT exists */

tscrap = fopen (scrap _path, "w+");
/* read data from the file tscrap */

/* GEM 2.0 version */
/* User has requested a 'paste' operation */
files = scrp_read(scrap path);
if (files > 0) /* There is some scrap */
if (files & 2) /* SCRAP.TXT exists */
{ strcat (scrap path, "SCRAP.TXT");
tscrap = fopen(scrap_path, "w+");
/* read data from the file tscrap */

I / Section 9 — Scrap library AES-179
9.2 Write Scrap Directory scrp_write

Write Scrap Directory is used to change the current directory for the storage
l of files containing desk scrap information.

l 9.2.1 Definition

The Prospero C definition of Write Scrap Directory is :
I WORD scrp_write(const char *pscrap);
l 9.2.2 Purpose

This function is used by an application to change the directory currently being
used to hold the desk scrap files. As it is entirely up to the application to handle

l scrap file output and so on, the only effect of this function is to change the
value that will be returned by scrp read (see section 9.1). So long as all
applications are well behaved and use the scrp_read function before looking

l for scrap files, this function will change where they look. This function should
only be used prior to a cut or copy operation, as it will cause the current
contents of the scrap to become inaccessible.

l This function does not create the directory, but checks that it exists, returning
an error code if the specified directory cannot be found.

l 9.2.3 Parameters
Parameter Type of Parameter description

[name parameter Function of parameter
pscrap const char * New scrap directory

l The directory specification of the directory to

be designated as the scrap directory, in which all
applications should look for scrap files for a

l paste operation, or place them for a cut or copy
operation.

7 AES-180 Section 9 — Scrap library

9.2.4 Function Result

A value of zero will be returned to indicate an error, such as the directory does
not exist, while a value greater than zero means no error was detected.

9.2.5 Example
char scrap path[80];

scrp_read(scrap_path);
if (scrap path([0] == 'A') /* On a slow disk */
{ strcpy(scrap path, "C:\");
scrap write(scrap path); /* .. so move it */
}

l 7/ Section 9 — Scrap library AES-181

9.3 Clear Scrap Directory scrp_clear
Clear Scrap Directory is used to delete all SCRAP.* files from the currently
I nominated scrap directory. This function is not provided in GEM version 1.1.
| 9.3.1 Definition
The Prospero C definition of Clear Scrap Directory is :
[WORD scrp_clear(void);
' 9.3.2 Purpose

This function is used by an application to delete all scrap files from the current
scrap directory. There must be a current scrap directory, nominated by this or
l a previous application using scrp_write (see section 9.2). An application
might use this when the user has requested a cut or copy operation, prior to
writing the new scrap file(s) containing the information being cut or copied.

[This function is not provided in GEM version 1.1.

[9.3.3 Parameters

There are no parameters.

I 9.3.4 Function Result

A value of zero is returned to indicate an error, such as there is no scrap
l directory, while a value greater than zero means no error was detected.

9.3.5 Example

l char scrap_path[80];
FILE *scrap;
l if (scrp_read(scrap_path)) /* No scrap directory */
{ strcpy (scrap path, "C:\"):
scrp_write(scrap_path); /* .. so nominate one */
}
I scrp_clear(); /* Delete any SCRAP files */

strcat (scrap _path, "SCRAP.TXT");

scrap = fopen (scrap_path, "w+");

/* write the data that the user has cut or copied to
I the stream scrap */

y AES-182 Section 10 — File Selector library

10 FILE SELECTOR LIBRARY

This section contains a description of the File Selector function.
Section Function description Binding name
10.1 Select File and Directory fsel input

This function is provided to allow all applications to prompt the user for a
filename in a consistent manner. The dialog produced is suitable for selecting
both existing and new filenames, and allows the user to see what files exist, and
either select one of them or select a new filename by typing it in. The file
display can be restricted to those files with a particular extension or extensions.

I / Section 10 — File Selector library AES-183

10.1 Select File and Directory fsel input

Select File and Directory is used to allow a user to select a file and directory
using the standard GEM file selector form.

10.1.1 Definition
The Prospero C definition of Select File and Directory is :

WORD fsel input (char pipath[], char pisell],
WORD *wasok) ;

10.1.2 Purpose

This function is used by an application to prompt the user for a filename and
directory using the standard file selector form. By using this function, all
GEM applications provide a uniform interface to users, thus making all GEM
applications easier to learn. The standard file selector allows the user to see
what files currently exist in each directory, and to change directories and
disks. The user can choose one of the existing files listed, or type in a new file
name — the list of existing files is still useful so the user can be sure that the
selected filename does not already exist.

7 AES-184

Section 10 — File Selector library

10.1.3 Parameters

Parameter Type of

Parameter description
Function of parameter

name parameter
pipath char []
pisel char []
wasok WORD *

Path specification

Points to a null terminated string containing the
path specification and file type specification for
file selection. The initial, suggested value placed
here by the application before calling the
function may be modified by the user when
interacting with the form, and the setting when
the user exited is returned in the same array.
The application should take care to ensure that
the pathname is in valid DOS form, as GEM is
not very robust and liable to behave
unpredictably if given an illegal path. The path
should finish with a wildcard file specification
indicating which files are to be displayed as
available for selection. In GEM 2.0, multiple
file selectors of the form "*.TXT,*.DOC' are
supported.

File specification

The file specification selected. The application
should place an initial suggested choice in the
array pointed to by this parameter before
calling the function — this can be an empty
string, or perhaps the name of the last file
selected. The name of the file selected by the
user is returned in the same array when the
function returns.

OK flag

This parameter points to an object which
indicates which exit button was selected. If it
returns one, the user exited by clicking OK or
pressing Return/Enter, indicating that the
choice of filename and directory is to be used. If
this parameter returns zero, the user exited by
clicking on Cancel, and the application should
abort the file operation for which it was
obtaining the filename.

l 7 Section 10 — File Selector library AES-185
10.1.4 Function Result

This function returns a value of zero to indicate an error, while a value greater

l than zero means no error was detected. The most likely error is insufficient
memory, as a two kilobyte buffer is required for temporary storage of the
directory while sorting it.

10.1.5 Example

I #include <stdio.h>
#include <string.h>
#include <aesbind.h>

l char current_path[81], temp path[81], filename[81];
char current file[13], temp file[13];
WORD ok;

l int i;

FILE *stream;

strcpy (temp path, current path);
l strcat (temp_path, "*.DOC");
strcpy (temp_file, current file);
fsel input (temp path, temp file, &ok);
l if (ok)
{ /* Values in temp path and temp file are valid */
strcpy (current_file, temp file);
i = strlen(temp path);
I while ((i > 0) && (temp path[i-1] != '\\'))
if (i > 0)
{ /* Path reasonable */

I /* remove '*.DOC' from path*/
strcpy (current path, temp path);
current path([i] = '\O0';

l strcpy(filename, current path);
strcat (filename, current file);
stream = fopen(filename, "w+");

/* Use the file */
[)
}
/* Leave current path, current file unchanged if
l CANCEL clicked */

7 AES-186 Section 11 — Window library
11 WINDOW LIBRARY

This section contains descriptions of the Window Library functions, in the
following sub-sections.

Section Function description Binding name
11.1 Create Window wind create
11.2 Open Window wind open
11.3 Close Window wind close
11.4 Delete Window wind delete
11.5 Inquire Window Attributes wind get
11.6 Set Window Attributes wind_ set
11.7 Find Window Under Point wind find
11.8 Start / End Window Update wind update
11.9 Calculate Window Coordinates wind calc
11.10 Set Window Title or Info wind title

wind info
11.11 Set New Desktop wind newdesk

The functions in the Window Library are concerned with creating, displaying
and updating windows on the screen. Overlapping windows are a very
important feature of the GEM interface, and provide a very powerful way of
organising screen output in such a way that different information, perhaps
even output by different programs, is clearly distinguishable and there is no
confusion about what output comes from where. GEM AES supports up to 8
windows at any one time — however if an application were to use 8 windows,
there would be none available for desk accessories, which would therefore not
be able to run. It is therefore advisable for an application to restrict itself to
perhaps 4 windows, leaving 4 available for use by desk accessories.

l y Section 11 — Window library AES-187

Note that the functions wind title, wind info and wind newdesk do
not form part of the original Digital Research bindings, but are provided in the
l Prospero C bindings.

Each window is referred to by a window handle, a number in the range 0 to 8
Window handle 0 is special, and refers to the desktop surface, on top of which
l all application windows lie. A window’s handle is returned by the function
wind create (section 11.1) which must be used before the window can be
used for any of the other window library calls. The call of wind_create
l does not cause the window to be opened (i.e. displayed on the desktop) — this
may be done at any subsequent time using wind_open (section 11.2). Once
created, a window may be opened and closed any number of times, the window
handle and associated AES workspace remaining valid until the application
I indicates that the window handle is no longer required using the function
wind delete (section 11.4). Often an application will always open a window
immediately after creating it, and always delete it immediately after closing it.
I However if, for example, the window was being closed temporarily, to be
reopened later, it would not be sensible to release the window handle for reuse
when the window was closed, as this might result in there being no handle
I available when the application came to reopen it.

Applications should take care that they correctly handle the case where no
windows are available, perhaps by prompting the user to close some windows

l and try again. An application which does not correctly close and delete its
windows before terminating will be a menace to other applications which run
after it — if windows are closed but not deleted, there will be less than 8 handles

I available for subsequent applications, while if they are deleted but not closed,
the image will remain on the screen, with control points active, but nowhere to
send the messages to when, for example, redraws are required — the result can
be very messy! Worst of all are applications which terminate without

l indicating that a window update is complete — this will disable the menu bar,
move and size boxes, and window redraws of the next application, and will
normally require the machine to be reset.

A window consists of two independent areas: the work area, which is
maintained by the application, and the border area, which is managed by the
[GEM AES screen manager. The border area consists of a number of separate
control areas, each of which causes a different message to be sent to the
application when clicked upon, and interacts with the user’s mouse behavior in
a specific manner. The control areas present on a particular window are
I specified by the value of the kind parameter when the window is created (see
section 11.1); each bit of this parameter indicates the presence or absence of a
particular window component, and the following constants are provided in the
I file AESBIND.H to be combined (using |) as required:

7 AES-188

Section 11 — Window library

Value Name

0x0001 NAME

0x0002 CLOSE

0x0004 FULL

0x0008 MOVE

0x0010 INFO

0x0020 SIZE

Component Function

A title bar one character high at the top of the window.
The text to be displayed here must be set up using
wind_ set (section 11.6) or wind title (section
11.10) before opening the window. This area does not
interact with the mouse, though if the MOVE component
is present, the move box will coincide with the title bar.

A close box in the top left hand corner of the window. If
the user clicks in this box, the AES screen manger sends
a WM_CLOSED message to the application which owns
the window. The application should respond by closing
the window, if appropriate.

A full box in the top right hand corner of the window. If
the user clicks in this box, the AES screen manger sends
a WM_FULLED message to the application which owns
the window. The application should respond by
expanding the window to its full size or shrinking it
back to its previous size.

A move bar at the top of the window. This bar will also
contain the title if the NAME component is specified. The
user can click in this box, and drag the outline of the
window to a new position. When the button is released,
the AES screen manger sends a WM_MOVED message
to the application which owns the window. The
application should respond by moving the window to the
requested position if appropriate.

An information line one character high at the top of the
window. The text to be displayed here must be set up
using wind_set (section 11.6) or wind_info (section
11.10) before opening the window. This area does not
interact with the mouse.

A size box in the bottom left hand corner of the window.
The user can click in this box, and drag the outline of the
window to a new size. When the button is released, the
AES screen manger sends a WM_SIZED message to the
application which owns the window. The application
should respond by resizing the window to the requested
size if appropriate.

l Z Section 11 — Window library AES-189

Value Name

l 0x0040 UPARROW

0x0080 DNARROW

0x0100 VSLIDE

0x0200 LFARROW

I 0x0400 RTARROW

I 0x0800 HSLIDE

Component Function

A box containing an up arrow at the top of the right
hand edge of the window. If the user clicks in this box, a
WM_ARROWED message is sent to the application,
which should respond by scrolling the window contents
up by one row.

A box containing a down arrow at the bottom of the
right hand edge of the window. If the user clicks in this
box, a WM_ARROWED message is sent to the
application, which should respond by scrolling the
window contents down by one row.

A scroll bar and slider along the right hand edge of the
window. The user can click in the bar above or below
the slider box, causing a WM_ARROWED message
requesting a scroll of one page to be sent, or drag the
slider box to a new position, causing a WM_VSLID
message to be sent.

A box containing a left arrow at the left of the bottom
edge of the window. If the user clicks in this box, a
WM_ARROWED message is sent to the application,
which should respond by scrolling the window contents
left by one column.

A box containing a right arrow at the right of the
bottom edge of the window. If the user clicks in this
box, a WM_ARROWED message is sent to the
application, which should respond by scrolling the
window contents right by one row.

A scroll bar and slider along the bottom edge of the
window. The user can click in the bar to the right or left
of the slider box, causing a WM_ARROWED message
requesting a scroll of one page to be sent, or drag the
slider box to a new position, causing a WM_HSLID
message to be sent.

7 AES-190 Section 11 — Window library

A window with all the above components will appear approximately as

follows :-
C_‘I“ Box M°"J°- B Full Box
M| Title ' ¢ Up Arrow

Information Line

Vertical Slider

Work area of window and Bar

19— Down Arrow

41

[

Left Arrow Horizontal Slider and Bar Right Arrow

Size Box

The appearance may vary slightly on different versions of GEM - for
example, the arrows are hollow on the Atari version, and the window sliders
are the full width of the slider bar in GEM version 1.1.

The work area of a window is maintained by the application, and the
application is free to output any text, VDI graphics, or AES object trees within
this area. Before making any such output, the application should notify GEM
AES that a window update is about to be performed using wind update, as
otherwise a drop down menu could still be onscreen obscuring part of the
window. Note that the output is not automatically clipped to the work area, nor
(when a window is partially covered by other windows) is it clipped to the
visible portion of the window. When outputting to the top (active) window, the
application may specify a clipping rectangle equal to the work area of the
window — however, the top window can change without warning, and the
application must assume after any evnt mesag or evnt_multi call that it
may have done so.

l

l 7 Section 11 — Window library AES-191

If an application is outputting to an underlying window, or (more commonly)
redrawing it as a result of a redraw message, the process required is more
complicated, as the application must output to each visible rectangle separately.
To assist in this, the GEM AES maintains for each window a list of rectangles
which are visible. The top rectangle will always have a single rectangle
corresponding to the portion of the work area which is not off screen, while a
window which is partially covered by seven other windows will have a rather
more fragmented visible area, and therefore a longer rectangle list. A window
which is completely obscured will have no rectangles in its visible list. When
an application receives a redraw message, or wishes to redraw part or all of an
underlying window, it should proceed as follows:

1. Notify GEM AES that it is about to update a window, using
wind update with a parameter value of BEG_UPDATE (see section
11.8).

2. Obtain the first rectangle in the window’s list, using wind get with a
value of WF_FIRSTXYWH in the w_field parameter (see section 11.5).

3. If this rectangle’s width and height are not zero (this is used to indicate the
end of the rectangle list), obtain the intersection of the rectangle with the
area to be redrawn. Otherwise go to step 6.

4. If the two areas intersect, set the clipping rectangle to this intersection,
and output the window contents to it.

5. Obtain the next rectangle in the visible list using wind_get with a value
of WF_NEXTXYWH in the w_field parameter, and go to step 3.

6. Notify GEM AES that the window update is over, using wind_update
with a parameter value of END_UPDATE.

7 AES-192 Section 11 — Window library
11.1 Create Window wind_create

Create Window is used to obtain a window handle to identify a window for
future GEM AES window library calls. GEM AES will allocate the space in
which it stores the information about the window, but does not cause the
window to be displayed on the screen — see wind open in section 11.2.

11.1.1 Definition

The Prospero C definition of Create Window is :

WORD wind create(WORD kind,
WORD wx, WORD wy, WORD ww, WORD wh) ;

11.1.2 Purpose

This function is used by an application to obtain the window handle to a new
window, and must be used prior to performing any operation on a window.
GEM AES supports a maximum of 8 windows, though as some of these may be
used by desk accessories it is not safe to assume that all 8 are available, nor is it
desirable to use all 8 or desk accessories will be unable to run. The application
must specify the coordinates and size of the window’s maximum size — this is
the rectangle returned when an application inquires what a window’s full size
is — see wind_get (section 11.5) — but does not appear to have any other
purpose. However it would be sensible for an application to treat this as a limit
on the maximum size that the window can assume.

11.1.3 Parameters

Parameter Type of Parameter description
name parameter Function of parameter
kind WORD Window components

Each bit of the parameter indicates whether or
not a particular window feature is present, as
described in the introduction to section 11.

The bit values (defined in AESBIND.H) should
be combined using the OR (|) operator to
indicate which features are required. If a
particular combination is used frequently, a
macro could be declared.

I

/ Section 11 — Window library

AES-193

WX
wy
ww
wh

WORD
WORD
WORD
WORD

11.1.4 Function Result

Full size X coordinate
Full size Y coordinate
Full size width
Full size height

The coordinates and size of the full size
window, in pixels. These indicate the maximum
size that the window will be allowed to take, and
will typically correspond to the work area of the
desktop surface.

The value returned is the window’s handle, which must be passed as the first
parameter to all subsequent window library calls to identify the window. Valid
handles are in the range 1 to 8; handle 0 is used to refer to the desktop window.
A negative value indicates that no window could be allocated, normally
because all 8 window handles are in use. This may be due to a badly behaved
application which has not deleted windows using wind delete (section 11.4)
when it has finished with them.

11.1.5 Example

#define WEF WXYWH 4

#define NAME
#define CLOSE

0x0001
0x0002

/* All these are in AESBIND.H */

WORD my window;
WORD x, y, W, h;

/* Get size of desktop work area - see section 11.5 */

if

(my window > 0)

wind get (0, WF_WXYWH, &x, &y, &w, &h);

my window = wind create(NAME | CLOSE, x, y, W, h)z

{ /* Successfully opened */

}

7 AES-194 Section 11 — Window library
11.2 Open Window wind_ open

Open Window is used to open a previously created window, causing GEM AES
to draw the border area (slider bars, title etc.) on the screen.

11.2.1 Definition
The Prospero C definition of Open Window is :

WORD wind open (WORD handle,
WORD wx, WORD wy, WORD ww, WORD wh) ;

11.2.2 Purpose

This function is used by an application to open a window and display it on the
screen. The window opened will be made the top (active) window. GEM AES
will draw the border areas of the window; the application should then draw the
window’s contents, or fill the work area with a white background if the
window is empty. If the window was created with the NAME or INFO bits set,
indicating that is has a title or an information line,then the text of these must
have been set up either using wind_set (section 11.6) or using the additional
Prospero C bindings wind title and wind info (section 11.10) before
the window is opened, otherwise garbage may be displayed, or GEM may
crash.

11.2.3 Parameters

Parameter Type of Parameter description
name parameter Function of parameter
handle WORD Window handle

The handle of the window to be opened, as
returned by wind create when the window
was created.

WX WORD Window X coordinate
wy WORD Window Y coordinate
wwW WORD Window width
wh WORD Window height

The coordinates and size (in pixels) with which
the window is to be opened.

l

l Z Section 11 — Window library AES-195

11.2.4 Function Result

This function returns a value which will be zero if an error occurs, or greater
than zero if no error is detected.

11.2.5 Example

#define WF_WXYWH 4
#define NAME 0x0001
#define CLOSE 0x0002
/* All these are in AESBIND.H */

WORD my_ window;
WORD fx, fy, fw, fh; /* Full size area *of
WORD x, y, W, h; /* Current window area*/

/* Get size of desktop work area - see section 11.5 */
wind get (0, WF_WXYWH, &fx, &fy, &fw, &fh) ;

my window = wind create(NAME | CLOSE,
. fx, fy, fw, fh);
if (my_window > 0)
{ x = fw/4 + £x;
y = th/4 + fy;
w = fw/2;
h = fh/2;

/* Must set title before opening */
wind title (my window, "New window");

/* Open window, quarter size and central */
wind open(my window, x, y, w, h);

7 AES-19 Section 11 — Window library

11.3 Close Window wind_close

Close Window is used to close a previously opened window, causing it to be
removed from the screen, and any areas it covered to be redrawn either by the
GEM AES screen handler for areas of the desktop background, or by the
owner of any windows which were partially or completely covered, by
sending them redraw messages.

11.3.1 Definition
The Prospero C definition of Close Window is :

WORD wind close (WORD handle) ;

11.3.2 Purpose

This function is used by an application to close a window and redraw the area
of the screen it covered. The window handle is not made available for re-use,
and indeed the window can be reopened using wind open (section 11.3)
without having to recreate it. An application should ensure that all windows
are closed and deleted (in that order) before it terminates.

11.3.3 Parameters

Parameter Type of Parameter description
name parameter Function of parameter
handle WORD Window handle

The handle of the window to be closed, as
returned by wind_create (section 11.1) when
the window was created.

l

l / Section 11 — Window library AES-197
11.3.4 Function Result

This function returns zero if an error occurred, or greater than zero if no
l error was detected.

{ 11.3.5 Example

#include <aesbind.h>

l WORD my_ window;
WORD buffer(8];

[evnt_mesag (buffer); /* Await a message */
switch (buffer[0]) {
case WM _CLOSED: /* User clicked close box, so do */
wind close (buffer(3]);
! break;

7 AES-198 Section 11 — Window library
11.4 Delete Window wind_delete

Delete Window is used to free the space used by GEM AES for a window, and
to make the window handle available for reuse. The window must be closed
before this function is used, or the image of the window will not be removed
from the screen.

11.4.1 Definition

The Prospero C definition of Delete Window is :
WORD wind delete (WORD handle) ;

11.4.2 Purpose

This function is used by an application when it no longer requires a window
handle, and wants to make it available for reuse. No window library calls
should be made using this window handle after this function has been called.
An application should ensure that all windows are closed and deleted (in that
order) before it terminates, or subsequent applications will find that less than 8
windows are available, and the GEM screen manager may continue to draw
windows whose application has terminated.

11.4.3 Parameters

Parameter Type of Parameter description
name parameter Function of parameter
handle WORD Window handle

The handle of the window to be deleted, as
returned by wind create (section 11.1) when
the window was created.

I

! / Section 11 — Window library AES-199

11.4.4 Function Result

This function returns zero if an error occurs and greater than zero if no error
occurs.

11.4.5 Example

WORD my_ windows [4];
int 1i;

/* About to terminate ... */
/* Close then delete any windows I was using */
for (i = 0; 1 < 4; i++)
if (my_windows[i] > 0)
{ wind close (my windows[i]);
wind delete(my windows[i]);

}

appl_exit();

7 AES-200

Section 11 — Window library

11.5 Inquire Window Attributes wind get

Inquire Window Attributes is used to return a variety of information about a
window, depending upon the value of the w_field parameter.

11.5.1 Definition

The Prospero C definition of Inquire Window Attributes is :

WORD wind_get (WORD w_handle, WORD w_field, WORD *pwl,
WORD *pw2, WORD *pw3, WORD *pwi4);

11.5.2 Purpose

This function is used by an application to discover the values of a number of
the fields in the internal window information maintained by GEM AES. This
includes various size information, information about the slider positions, and
the window’s rectangle list (see the introduction to section 11). The meanings
of the values returned via the parameters pwl, pw2, pw3, and pw4 depend
upon the value of the w_field parameter.

The possible values of w_field are as follows:

4 (WF_WXYWH)
5 (WF_CXYWH)

6 (WF_PXYWH)

7 (WF_FXYWH)

Return the coordinates and size of the window’s
work area.

Return the coordinates and size of the entire window,
including border and shadow.

Return the previous coordinates and size of the entire
window. This might be used when a user clicks in the
full box of a full size window, indicating that the
window is to be returned to its previous size.

Return the coordinates and size of the full size
window, including border and shadow, as specified
when the window was created (see section 11.1). An
application might use this when the user clicks in the
full box, to indicate that the window is to be made
full size.

!

l 7/ Section 11 — Window library AES-201

8 (WF_HSLIDE)

9 (WF_VSLIDE)

| 10 (WF_TOP)

11 (WF_FIRSTXYWH)
12 (WF_NEXTXYWH)

15 (WF_HSLSIZE)
l 16 (WF_VSLSIZE)

17 (WF_SCREEN)

Return a number in the range 1 to 1000 in *pwl,
giving the position of the horizontal slider. A value
of 1 means at the left hand end, while 1000 means at
the right.

Return a number in the range 1 to 1000 in *pwi,
giving the position of the vertical slider. A value of 1
means at the top, while 1000 means at the bottom.

Return the window handle of the top (active) window
in *pwl.

Return the coordinates and size of the first rectangle
in the window’s rectangle list (see the introduction to
section 11).

Return the coordinates and size of the next rectangle
in the window’s rectangle list (see the introduction to
section 11).

Return a number in the range 1 to 1000 in *pwl,
giving the size of the horizontal slider relative to the
slider bar. A value of —1 may be returned to indicate
the default minimum size (a square box).

Return a number in the range 1 to 1000 in *pwl,
giving the size of the vertical slider relative to the
slider bar. A value of —1 may be returned to indicate
the default minimum size (a square box).

Return the address and size of the internal menu/alert
buffer as follows:

*pwl — low word of address
*pw2 — high word of address
*pw3 — low word of length
*pw4 — high word of length

The buffer may be used by an application for storing
images of portions of the screen only if there is no
possibility of a menu dropping down or alert being
made while the buffer is in use. The buffer is large
enough to hold a quarter of the screen image.

7 AES-202

Section 11 — Window library

11.5.3 Parameters

Parameter Type of

Parameter description

name parameter Function of parameter

w_handle WORD Window handle
The handle of the window about which the
application is inquiring, as returned by
wind create (section 11.1) when the window
was created. When the value of w_fieldis 10
(WF_TOP) or 17 (WF_SCREEN) the value of
this parameter is not used.

w_field WORD Information required
The information which the application wants
returned. See above for the possible values.

pwl WORD * First information word

pw2 WORD * Second information word

pw3 WORD * Third information word

pwié WORD * Fourth information word

11.5.4 Function Result

These parameters point to objects which return
the requested information. The meanings of the
values returned depend on the value of
w_field. Where the values returned are the
coordinates and size of a rectangle, the values
will be returned as follows:

*pwl — X coordinate of rectangle
*pw2 — Y coordinate of rectangle
*pw3 — Width of rectangle
*pw4 — Height of rectangle

Where a single value is returned, it is returned
in *pwl.

This function returns zero if an error occurs and greater than zero if no error

occurs.

l

’ y Section 11 — Window library AES-203

11.5.5 Example
#include <aesbind.h>

WORD my window;
WORD x, y, w, h;

/* rx, ry, rw, rh contain redraw rectangle from AES*/

/* Get first visible rectangle of window */
wind get (my window, WF_FIRSTXYWH, &x, &y, &w, &h);

while ((w != 0) && (h != 0))
{ /* Do this for each valid rectangle in list */
if (intersect(x, y, w, h, rx, ry, rw, rh))
/* Function intersect must be provided! */
/* Redraw area of intersection */;

/* Get next visible rectangle of window */
wind get (my window, WF_NEXTXYWH, &x, &y, &w, &h);

7 AES-204 Section 11 — Window library
11.6 Set Window Attributes wind_set

Set Window Attributes is used to set a variety of information about a window,
depending upon the value of the w_field parameter.

11.6.1 Definition

The Prospero C definition of Set Window Attributes is :

WORD wind_set(WORD w_handle, WORD w_field,
WORD wl, WORD w2, WORD w3, WORD wi);

11.6.2 Purpose

This function is used by an application to set the values of a number of the
fields in the internal window information maintained by GEM AES. This
includes various size information, information about the slider positions, and
the window’s update list (see the introduction to this section). The meanings of
the parameters w1, w2, w3, and w4 depend upon the value of the w field
parameter.

The possible values of w_field are as follows:

2 (WF_NAME) Set the address of the title string. The parameters w1l
and w2 should contain the first and second words of
the address of a null-terminated string. Note that GEM
AES remembers the address of the string rather than
making a copy of it, and therefore the string whose
address is passed must remain in existence for as long
as the window is displayed. A string constant is
particularly suitable. Note also that the title must be set
before the window is opened if the window was
created with a title bar. See the Prospero C binding
wind title in section 11.10, which provides a
much simpler interface to achieve this.

3 (WF_INFO) Set the address of the information string. The same
comments apply as for WF_NAME above. See the
Prospero C binding wind info in section 11.10,
which provides a much simpler interface.

5 (WF_CXYWH) Set the coordinates and size of the entire window,
including border and shadow. This may cause a
redraw message to be issued for this or other
windows.

l

Y Section 11 — Window library AES-205

8 (WF_HSLIDE)

9 (WF_VSLIDE)

10 (WF_TOP)

14 (WF_NEWDESK)

15 (WF_HSLSIZE)

16 (WE_VSLSIZE)

18 (WF_TATTRB)

Set the position of the horizontal slider. Pass a number
in the range 1 to 1000 in w1, where a value of 1 means
at the left hand end, and 1000 means at the right.

Set the position of the vertical slider. Pass a number in
the range 1 to 1000 in w1, where a value of 1 means at
the top, and 1000 means at the bottom.

Make the window whose handle is passed in w1 the top
(active) window.

Pass the address (first word in w1, second word in w2)
of an object tree which is to be drawn as the desktop
background. The first object to draw in the tree should
be passed in w3. The object tree should completely
cover the desktop area or parts of the screen will be
left with garbage when a window is moved. This
function should be used with great caution — no
method is provided to restore normal desktop
redrawing when an application terminates, so that
unless the next application run is the GEM Desktop
(which has privileged information on how to do this),
the new desktop surface will continue to be redrawn
even after the application terminates. By this time the
memory containing the object tree being drawn will
have been returned to the operating system, and will
therefore become corrupted some random interval
later, causing the next application to crash. See the
Prospero C binding wind_newdesk in section 11.11,
which provides a simpler interface to avoid having to
calculate the low and high words of the address.

Set the size of the horizontal slider relative to the
slider bar. Pass a number in the range 1 to 1000 in w1,
or a value of —1 to indicate the default minimum size (a
square box).

Set the size of the vertical slider relative to the slider
bar. Pass a number in the range 1 to 1000 in w1, or a
value of —1 to indicate the default minimum size (a
square box).

Set the window attribute bit vector. In GEM version
2.0, this consists of a single bit (the least significant
bit) indicating whether the window is on top or not —
other bits are reserved for future use and should be
zero. This is not provided in GEM version 1.1.

7 AES-206

Section 11 — Window library

19 (WF_SIZTOP)

Move the window whose handle is w handle to the

top, and set its coordinates and size to the values in w1l

to w4.

This is not provided in GEM version 1.1

Where the coordinates and size of a rectangle are being set, wl gives the x
coordinate, w2 the y coordinate, w3 the width and w4 the height.

11.6.3 Parameters

Parameter Type of

Parameter description

name parameter Function of parameter

w_handle WORD Window handle
The handle of the window which the application
is modifying, as returned by wind create
(section 11.1) when the window was created.
When the value of w_field is 10 (WF_TOP)
or 14 (WF_NEWDESK) the value of this
parameter is not used.

w_field WORD Information to set
The information which the application wants to
set. See above for the possible values.

wl WORD First information word

w2 WORD Second information word

w3 WORD Third information word

w4 WORD Fourth information word

The meanings of these parameters depend on the
value of w_field. Where the values set are the
coordinates and size of a rectangle, the values
are passed as follows:

wl — X coordinate of rectangle
w2 — Y coordinate of rectangle
w3 — Width of rectangle
w4 — Height of rectangle

Where a single value is set, it is passed in w1l.

l 7 Section 11 — Window library AES-207
11.6.4 Function Result

This function returns zero if an error occurs, and greater than zero if no error
[occurs.
l 11.6.5 Example

#include <aesbind.h>

I WORD my window;
WORD x, y, w, h;

I /* Find full size of window, and set it */

wind get (my window, WF_FXYWH, &x, &y, &w, &h);
wind set (my window, WF_CXYWH, x, y, w, h);

7 AES-208 Section 11 — Window library
11.7 Find Window Under Point wind_ find

Find Window Under Point is used to discover which window lies under a
certain point, usually the mouse position. Windows will be checked from the
top window and working backwards.

11.7.1 Definition
The Prospero C definition of Find Window Under Point is :

WORD wind find(WORD mx, WORD my) ;

11.7.2 Purpose

This function is used by an application to find out which window lies under the
specified point. The most common use of this is to discover the window under
the current mouse position. Windows are searched from the front window
backwards, which has the effect that the window which is visible at the
specified point will be found. If no window lies under the specified point, a
value of zero will be returned — this is the handle of the desktop surface.

11.7.3 Parameters

Parameter Type of Parameter description
name parameter Function of parameter

mx WORD X coordinate of point
my WORD Y coordinate of point

The coordinates of the point whose
corresponding window is to be found.

11.7.4 Function Result

This function returns the window handle of the window which is visible at the
specified point, or zero if the desktop surface is visible.

I

4 Section 11 — Window library

AES-209

11.7.5 Example

WORD
WORD
WORD

/*

my_ window;
dummy ;
mx, my;

wait for a click */

evnt button(l, 1, 1, &mx, &my, &dummy,

if

(Gind_find(mx, my) != my window)

/* clicked outside window - beep */
else

{
}

/* Do something with click */

&dummy) ;

7 AES-210 Section 11 — Window library
11.8 Start or End Window Update wind_update

Start or End Window Update is used to indicate that an application is about to
start or finish updating a window, or that it wants to take or relinquish control
of mouse functions.

11.8.1 Definition
The Prospero C definition of Start or End Window Update is :

WORD wind update (WORD begend) ;

11.8.2 Purpose

This function is used by an application to prevent drop down menus from
appearing or other windows from being updated while it is outputting to a
window. If an application does not signal the start of an update before
outputting to a window, it has no way of knowing whether the portion of the
window it is outputting to is covered by a menu, or whether the user is holding
down the mouse button half way through a window move operation, for
example. When the application indicates that it is entering window update
mode, GEM AES will wait until all menus are put away and no drags of
windows, sliders etc. are in progress before returning. It is standard practice
to enter update mode as soon as an event occurs before processing it, and to
leave update mode immediately before waiting for the next event. Care should
be taken that the application leaves update mode before terminating, or the
GEM Desktop (or whatever application runs next) will not function, and the
machine may have to be rebooted.

This function also allows an application to specify whether the mouse is to
interact with the menu and the window control points or not. This would be
used for example by an application doing its own form processing rather than
using form_do (section 7.1), to prevent menus from appearing when the
mouse was moved into the menu bar. Once again, normal mouse function must
be restored before terminating, and before any message event is waited for.

l

I y Section 11 — Window library AES-211

11.8.3 Parameters

Parameter Type of Parameter description
name parameter Function of parameter
begend WORD Update begin or end

A value in the range 0 to 3 as follows:

0 (END_UPDATE)

Leave window update mode
1 (BEG_UPDATE)

Enter window update mode
2 (END_MCTRL)

Leave mouse control mode
3 (BEG_MCTRL)

Enter mouse control mode

The above macros are defined in AESBIND.H.

11.8.4 Function Result

This function returns zero if an error occurs and greater than zero if no error
occurs.

11.8.5 Example
#include <aesbind.h>
WORD event;

do {
event = evnt multi /*lots of parameters here*/;
wind update (BEG_UPDATE) ;
/* Process the event */
wind update (END_UPDATE) ;
} while /* the event did not cause the application to
terminate */

Y AES-212 Section 11 — Window library

11.9 Calculate Window Coordinates wind calc

Calculate Window Coordinates is used to convert between the coordinates and
size of an entire window (including the border area) and those of the window’s
work area, or vice versa.

11.9.1 Definition

The Prospero C definition of Calculate Window Coordinates is :

WORD wind calc (WORD workflag, WORD kind,
WORD x, WORD y, WORD w, WORD h,
WORD *px, WORD *py, WORD *pw, WORD *ph);

11.9.2 Purpose

This function is used by an application to calculate the coordinates of a
window’s work area given the coordinates of the entire window, or vice versa.
This might be used for example when a window has been moved — the new
coordinates of the entire window are specified in the WM_MOVED message
from GEM AES, but when redrawing the contents of the window, the
application will need to know the coordinates of the window’s work area. The
application must specify what features the window has, as this affects the size
of the border area; this is done using a bitmap in the same form as for
wind create (section 11.1) in the parameter kind.

l

! y Section 11 — Window library

AES-213

11.9.3 Parameters

Parameter Type of Parameter description
l name parameter Function of parameter
l workflag WORD Return work area flag
This indicates whether the function is to return
the coordinates and size of the work area
l (workflag = 1) or of the entire window
(workflag =0).
l kind WORD Window features
A bitmap specifying the features present in the
window, in the same format as for the
I parameter kind in wind create. See the
introduction to section 11 for further details.
% WORD Input X coordinate
I v WORD Input Y coordinate
W WORD Input width
h WORD Input height
I The coordinates and size of the work area or
entire window, from which the coordinates and
size of the entire window or work area are to be
I calculated.
pPX WORD * Output X coordinate
[Py WORD * Output Y coordinate
pw WORD * Output width
ph WORD * Output height

These parameters point to objects which return
the coordinates and size of the work area or
entire window, calculated from the values in x,
y, wand h.

4 AES-214 Section 11 — Window library
11.9.4 Function Result

This function returns zero if an error occurs and greater than zero if no error
occurs.

11.9.5 Example

#include <aesbind.h>

#define my features 0OxOfee
/* All but info line and name*/

WORD my window;
WORD x, y, w, h;
WORD wx, wy, ww, wh;

/* Get desktop area */
wind get (0, WF_WXYWH, &x, &y, &w, &h);

my window = wind create(my features, x, y, w, h);
if (my window > 0)

{

/* Open a full size window */

wind open(my window, x, y, w, h);

/* Get coordinates of work area */
wind calc(l, my features, x, y, w, h,

&wx, &wy, &ww, &wh);

/* Output to the work area */

I / Section 11 — Window library AES-215

. 11.10 Set Window Title or Info wind_title
wind_info

l Set Window Title and Set Window Info are provided by the Prospero C
bindings as alternatives to the use of wind_set (section 11.6), to avoid the
need to calculate the low and high order words of the string’s address. These

l functions are not provided by the original Digital Research bindings.

l 11.10.1 Definition
The Prospero C definitions of Set Window Title and Info are :

l WORD wind title (WORD handle, const char *title);

WORD wind info(WORD handle, const char *info);

11.10.2 Purpose

I These functions may be used by an application to set the title or information
line of a window created with the NAME or INFO attributes (see section 11.1),
to provide a simpler interface than the use of wind_ set (section 11.6). Any

‘ window created with either the NAME or INFO attribute must have the title or
information line initialized either using one of these functions or using

wind_set before the window is opened, or garbage will be displayed and a

system crash may occur.

As GEM AES stores the address of the title or information string rather than a

l copy of its contents, the string passed must remain in existence (and
unmodified) for the entire time that the window is displayed. A string literal is
therefore particularly suitable.

7 AES216

Section 11 — Window library

11.10.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

handle WORD

title const char *
info const char *

11.10.4 Function Result

Window handle

The handle of the window whose title or
information line is being set.

New window title
New window information

These parameters point to null-terminated
strings containing the new text to be used for the
window title or to be displayed on the window’s
information line.

These functions both cause the GEM AES function wind_set (section 11.6)
to be called, and the value returned reflects the result of that operation. The
value returned will be zero if an error occurs and greater than zero if no error

OocCcurs.

11.10.5 Example

WORD my_ window;
WORD x, y, W, h;
WORD insert mode;

/* Create window with title, info line
(and all other features) */
my window = wind create(0x0fff, x, y, w, h);

/* Set up title and info before opening */
wind title (my window, "Work window");
wind info(my window, "Insert mode");

insert mode = 1;

wind open (my window) ;

/* Later ... */

/* Update info line to indicate state of flag*/
wind info(my window, insert_mode 2 "Insert mode"

"Overwrite mode");

I y Section 11 — Window library AES-217
11.11 Set New Desktop wind_newdesk

Set New Desktop is provided by the Prospero C bindings as an alternative to

I the use of wind_set (section 11.6), to avoid the need to calculate the low and
high order words of the form’s address. This function is not provided by the
original Digital Research bindings.

11.11.1 Definition
I The Prospero C definition of Set New Desktop is :

WORD wind newdesk (OBJECT *newdesk, WORD firstobj):;

11.11.2 Purpose

l This function may be used by an application to specify the address of an object
which is to be drawn as the desktop background on those areas of the screen not
covered by windows. This form may contain icons and so on which the user

I can select, and so on.

Any application which specifies a new tree for the desktop is likely to be
l dangerous for other applications to execute using the Prospero C spawn. ..
functions, as there is no way to reset the desktop to its previous tree, and the
memory containing the form being drawn will be released to the operating
system when the application which set the new desktop terminates. When this
[memory is reused (probably some time after the application terminated) the
currently running application will crash. It is therefore only safe to redefine
the desktop if you are certain that any program which might execute your
[application also does so, and will reset it as soon as your application terminates.

7 AES-218

Section 11 — Window library

11.11.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

newdesk OBJECT *

firstobj WORD

11.11.4 Function Result

New desktop background tree

The tree which is to be drawn as the new
desktop background.

First object to draw

The first object to draw in the tree.

This function causes the GEM AES function wind_set to be called, and the
value returned reflects the result of that operation. A value of zero indicates
an error has occurred and a value greater than zero means no error has

occurred.

11.11.5 Example

OBJECT * my desk;
char * child;

spawnl (P_WAIT, child, NULL);
/* Reset to my desktop in case child set its own */
wind newdesk (my desk, 0);

I / Section 12 — Resource library AES-219
12 RESOURCE LIBRARY

This section contains descriptions of the Resource Library functions, in the
l following sub-sections.

Section Function description Binding name
I 12:1 Load Resource File rsrc_load
l 12.2 Free Resource File Memory rsrc_free

12.3 Get Resource Address rsrc_gaddr
[12.4 Store Resource Address rsrc_saddr

12.5 Convert Object Coordinates rsrc_obfix

These functions are concerned with the management of resource files and their
contents. All applications normally have an associated resource file, with the

l same name but extension .RSC, containing the object trees that define the menu
bar, any dialog boxes used, and possibly other data such as icons, bit images
and so on. The resource file is created using a resource editor, which also

I provides an include file which defines the constants used to refer to the various
structures and objects in the file. The application can then use rsrc_load
(section 12.1) to load the data in the resource file into memory and prepare it
for use by the application, and rsrc_gaddr (section 12.3) to obtain the

l addresses of the data structures thus loaded. These can then be displayed or
manipulated in the normal way using the functions described in sections 6 and
7.

I The advantages of using a resource file rather than creating the object trees
dynamically within the application source are several. Firstly, the code to
produce an object tree dynamically is complicated and obscure, and requires a

[thorough understanding of the tree structure. An application which includes
the code to produce its own menu tree dynamically is likely to be larger and
will take longer to write than the time and space required to create an

I application and a resource file. Secondly, many alterations to the resource file
may not require the application to be recompiled — this is of particular
advantage when customizing an application for a foreign language. Thirdly, an

I application which produces its object trees dynamically is unlikely to be
machine independent, as it is hard to cope with the possibility of different
screen resolutions (handled easily using resource files) and there are instances
where the different word order used by the Motorola 68000 and Intel 8086

l processors affect the way in which object trees must be coded. By simply
recreating the resource file in a different environment, this problem can be
avoided.

7 AES-220 Section 12 — Resource library

To create a resource file using a resource editor is simple and quick, allowing
more time to go into careful design of the form layouts; when creating an
object tree dynamically, the process is slow and tricky to write, and any
changes to the layout of forms will be painful.

Note that most resource editors have an option whereby the resource
information can be generated in the form of C initialized static data
declarations, which give a third possible method of creating object trees. This
would have most of the advantages of using a resource file (although changes
would always require recompilation of the static data), with the added
advantage that only one file needs to be present for the application to be
executed.

/ Section 12 — Resource library AES-221
12.1 Load Resource File rsrc_load

Load Resource File is used to allocate memory and load an application’s
resource file, containing such things as the menu, dialog forms and so on.

12.1.1 Definition
The Prospero C definition of Load Resource File is :

WORD rsrc_load(const char *rsname);

12.1.2 Purpose

This function is used by an application to load into memory the contents of its
resource file, and must be used before any other resource library calls can be
made. This function also causes all objects in the file to be converted for the
screen resolution in use. Note that only one resource file can be loaded at a
time.

12.1.3 Parameters

Parameter Type of Parameter description
name parameter Function of parameter
rsname const char * Resource file name

The filename (and optional path specifier) of the
resource file. All resource files have the
extension .RSC, and by convention the same
name as the application to which they belong. As
they will reside in the same directory as the
application, which will usually be the default
directory when an application is running, the
path specifier may not be needed. However a
more robust application might use shel find
(section 13.3) to locate its resource file before
loading it.

7 AES-222 Section 12 — Resource library
12.1.4 Function Result

This function returns zero if an error occurs, or greater than zero if no error
is detected. It is prudent to check this value, and terminate (after notifying the
user of the problem) if the value is zero, indicating that the resource file cannot
be found.

12.1.5 Example

#include <aesbind.h>

main ()
{ appl_init ();
if (rsrc_load("MYPROG.RSC") == 0)
form alert(1,"[1] [No Resource File!][OK]");
else :

{ /* main body of program in here */

rsrc_free();
}
appl_exit();

I

I y Section 12 — Resource library AES-223

12.2 Free Resource File Memory rsrc_free

Free Resource File Memory is used to free the memory allocated by
rsrc_load.

12.2.1 Definition

The Prospero C definition of Free Resource File Memory is :

WORD rsrc_free(void);

12.2.2 Purpose

This function is used by an application to free the memory containing the
resources. This must not be used while any of the resources are in use, such as
the menu bar. This function is most commonly used when an application is
about to terminate.

12.2.3 Parameters

There are no parameters.

12.2.4 Function Result

This function returns zero if an error occurs, or greater than zero if no error
is detected.

12.2.5 Example

See section 12.1.5.

7 AES-224 Section 12 — Resource library
12.3 Get Resource Address rsrc_gaddr

Get Resource Address is used to obtain the address of a data structure in a
resource file loaded into memory using rsrc_load.

12.3.1 Definition

The Prospero C definition of Get Resource Address is :

WORD rsrc_gaddr (WORD rstype, WORD rsid,
OBJECT * *paddr);

12.3.2 Purpose

This function is used by an application to obtain the address of a data
structure from the resource file, so that it can be used by the application.
The application must have loaded the resource file using rsrc_load
(section 12.1) before using this function.

The application must supply the index and type of the structure whose
address it wants to obtain. The index will be supplied as a macro in the
header file generated by the resource editor, and should be passed in the
parameter rsid. The type is specified using the parameter rstype, and
should be one of the following:

0 object tree

1 object

2 tedinfo structure

3 iconblock structure

4 bitblk structure

5 null-terminated string

6 imagedata

7 ob_spec

8 te ptext

9 te ptmplt
10 te pvalid
11 ib pmask
12 ib pdata
13 ib ptext
14 bi pdata
15 ad_frstr (the address of a pointer to a free string)
16 ad_frimg (the address of a pointer to a free image)

See section 6 for more information on these data structures.

|

! / Section 12 — Resource library

AES-225

12.3.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

rstype WORD

rsid WORD

paddr OBJECT * *

12.3.4 Function Result

This function returns zero
error is detected.

12.3.5 Example

#define menu 0

OBJECT *TheMenu;

rsrc load("MYPROG") ;

Resource type

The type of the resource whose address is to
be returned, as listed above. To load a menu
or dialog tree, use the value zero.

Resource index

The index of the resource whose address is
required. This will be a macro provided by
the resource editor when the resource file was
created.

Resource address

This parameter points to an object which
receives a pointer to the specified data
structure. In order to pass a parameter of a
different type (as required when using a value
other than zero as the value of the rstype
parameter) without generating a warning, a
cast should be employed.

if an error occurs, or greater than zero if no

/* Provided by resource editor */

/* Load resource file */

rsrc:gaddr(o, menu, &TheMenu) ;

menu_bar (TheMenu,

/* Get address of menu */
1) /* .. and display it */

y AES-226 Section 12 — Resource library
12.4 Store Resource Address rsrc_saddr

Store Resource Address is used to store the address of a data structure into the
array containing the addresses of items loaded from a resource file using
rsrc_load

12.4.1 Definition

The Prospero C definition of Store Resource Address is :

WORD rsrc_saddr (WORD rstype, WORD rsid, void *1lngval);

12.4.2 Purpose

This function is used by an application to store the address of a data structure in
memory.

The application must supply the type of the structure whose address it wants to
store, and the index of the data structure. The type is specified using the
parameter rstype, and should be one of the following:

15 ad frstr /*the address of a pointer to a free string*/
16 ad frimg /*the address of a pointer to a free image™*/

l

l y Section 12 — Resource library

AES-227

12.4.3 Parameters

l Parameter Type of
name parameter

Parameter description
Function of parameter

rstype WORD

| rsid WORD

Resource type

The type of the resource whose address is to be
stored, as listed above.

Resource index

The location in the data structure where the
address is to be stored.

Resource address

This parameter contains the address to be
stored.

This function returns zero if an error occurs, or greater than zero if no error

lngval void *
! 12.4.4 Function Result
l is detected.
l 12.4.5 Example

#define fstraddr 2

/* Sample constant from resource editor */

! rsrc_saddr (15, fstraddr, "New free string");

7 AES-228 Section 12 — Resource library
12.5 Convert Object Coordinates rsrc_obfix

Convert Object Coordinates is used to convert the coordinate fields of an
object in an object tree from the character based (resolution independent) form
in which they are stored in a resource file to pixel coordinates.

12.5.1 Definition

The Prospero C definition of Convert Object Coordinates is :

WORD rsrc obfix (OBJECT *tree, WORD obj);

12.5.2 Purpose

This function is used by an application to convert the coordinates of an object
from the resolution independent form in which they are stored in a resource
file to pixel coordinates. Note that rsrc_ load (section 12.1) converts all
coordinates when it loads the resource file, so that it is unusual for an
application to require this function. However, as it is required internally by the
rsrc_load function, there is no harm in providing it.

12.5.3 Parameters

Parameter Type of Parameter description
name parameter Function of parameter
tree OBJECT * Tree containing object

The tree containing the object to be converted.

obj WORD Index of object to convert

The index in the object tree of the object whose
coordinates are to be converted.

l

l 7 Section 12 — Resource library AES-229

12.5.4 Function Result

This function always returns the value one.

12.5.5 Example

#define objl 20
/* Sample constant from resource editor */

OBJECT * my tree;

rsrc_obfix(my tree, objl);

7 AES-230 Section 13 — Shell library
13 SHELL LIBRARY

This section contains descriptions of the Shell Library functions, in the
following sub-sections.

Section Function description Binding name
13.1 Shell Read shel read
13.2 Shell Write (version 1.1) shel write 1
Shell Write (version 2.0) shel write 2
13.3 Shell Find shel find
134 Search Shell Environment shel envrn
13.5 Return Default Application shel rdef
13.6 Set Default Application shel wdef

The Shell is the name given to the parts of GEM VDI and AES that concern the
execution of applications. On the Atari ST, this forms an integral part of the
operating system, and a large proportion of what follows is not relevant. On
8086 and family computers, such as the IBM PC or the Amstrad 1512, the
GEM environment in which GEM applications execute is loaded into memory
after the underlying operating system (MS-DOS or DOS Plus), and the loading
of this environment, and of the applications that run in it, is handled by the
Shell manager, which is part of the GEMVDIEXE file. The GEM Desktop
Application, from which other applications can be started by double clicking
or opening, is just a normal GEM application, which is normally executed
within the GEM environment by the Shell Manager when GEM VDI and AES
are first loaded. When an application terminates, the Shell Manager will
normally execute the Desktop once again, to allow the user to select another
application to execute. However, it is possible to bypass the Desktop, both
when starting an application and when it terminates. If a parameter is given
when starting GEM from the operating system, such as ‘GEM progname’, the
specified application will be started after the VDI and AES are loaded, rather
than the GEM Desktop, and when it terminates, the user will be returned to the
operating system prompt. If a /D’ follows the name of the application, such as
‘GEM progname /D’, the Shell Manager will load and execute the GEM
Desktop application when the named application terminates.

I Y Section 13 — Shell library AES-231

The functions in the Shell Library described in this section are concerned with
altering the way the Shell Manager behaves when the current application
terminates, and with discovering the manner in which the Shell Manager
invoked the application. There are also functions to search for a file, and to
return the name of the file which was opened to start an application, which will
be relevant on both the IBM PC family and the Atari ST implementations of
GEM.

7 AES-232 Section 13 — Shell library
13.1 Shell Read shel_read

This function allows an application to obtain the command and command tail
with which the application was invoked.

13.1.1 Definition
WORD shel read(char pcmd[], char ptaill]);

13.1.2 Purpose

This function allows an application to identify the command that invoked it,
and the command tail invoked with it. If the application had been started by
double clicking on its icon or name, the command tail would be empty, while if
it had been installed as having a particular document type, it could be started by
double-clicking on a document of that type, in which case the command tail
would contain the name of the document. An application may also be started
from another application by means of the Prospero C spawn. .. functions,
in which case the command tail is specified by the parent application.

The GEM AES documentation states that both parameters must have space for
at least 128 characters, though the command can never use more than 80 of
these.

I y Section 13 — Shell library

AES-233

13.1.3 Parameters

l Parameter Type of

Parameter description
Function of parameter

name parameter
cmd char []
tail char []

13.1.4 Function Result

Command

This parameter provides the array which is used
to return the system command which invoked
the application — in other words the program
name, possibly preceded by a path specification.

Command tail

This parameter provides the array which is used
to return the command tail passed by the system.
This may contain the name (and possibly path)
of a document which was opened to start the
application, or have some other application
dependent meaning.

l This function returns zero if an error occurs, or greater than zero if no error

is detected.

13.1.5 Example

’ char cmd[129], tail([129];

/* Get name of application and document */
shel read(cmd, tail);

l /* Now use them

%

7 AES-234 Section 13 — Shell library

13.2 Shell Write shel write_1
shel write_2

Shell Write is a companion function to Shell Read in that it provides facilities
for GEM to execute another application after the current application
terminates. It can be used to provide the command (the disk identifier,
directory path and program name) as well as a command tail which can include
special instructions to be passed to the new program. See section 13.1 for
details of Shell Read.

The function and its binding have been altered slightly by Digital Research
between versions 1.1 and 2.0 of GEM - the bindings for both versions are
described below.

13.2.1 Definition
The Prospero C definitions of Shell Write are:

For GEM version 1.1

WORD shel write 1(WORD doex, WORD isgr, WORD iscr,
const char *pcmd, const char *ptail);

For GEM version 2.0

WORD shel write 2 (WORD doex, WORD isgr, WORD isover,
const char *pcmd, const char *ptail);

13.2.2 Purpose

This function can be used to make GEM execute another application after the
current one terminates, rather than return to the GEM Desktop or operating
system prompt from which it was invoked. In GEM version 2.0, the
application may specify that the new application is to be executed immediately
rather than when the current one terminates.

| 7 Soction 13 — Shell library AES-235
13.2.3 Parameters

l Parameter Type of Parameter description
name parameter Function of parameter
doex WORD Do execute

If this parameter is zero, no application is to be
executed, so that when the current application
[terminates this function should cause a return to

the operating system prompt. Otherwise, the
parameter value should be one.

{ isgr WORD Graphics application

If this parameter is 1 it indicates to GEM that
the application to be executed is a graphics
l application. This determines whether a
workstation is opened before starting it, and
whether the screen will be placed in
I alphanumeric or graphics mode. Otherwise, the
parameter value should be 0.

l iscr WORD GEM AES application

If this parameter is 1 it indicates to GEM that
the application to be called is a normal GEM

l AES application. Otherwise the parameter value
must be zero. This parameter is used in the
GEM version 1.1 bindings only.

l isover WORD Overlay specifier

This parameter specifies where and when the
l named application is to be executed. The
possible values are as follows:

0 Run application immediately in

l memory above current application,

returning to current application when

it terminates. The values of doex and

l isgr are ignored. This is similar to
the Prospero C spawn. . . functions.

1 Run application when current
I application terminates, in the same
memory as the current application.
The values of doex and isgr are
I used.

7 AES-236

Section 13 — Shell library

pcmd const char *

ptail const char *

13.2.4 Function Result

2 Run application when current
application terminates, in the memory
used by the current application and
GEM VDI. The values of doex and
isgr are used.

This parameter is not used in the GEM version
1.1 bindings.

Command

This parameter provides the system command
which calls the application. It would normally
contain the pathname of the application; that is
the disk drive identifier and directory path,
followed by the name of the applications
program with a .PRG, .APP, .EXE etc.
extension.

Command tail

This parameter provides the command tail
which is passed by the system or parent
application to the specified application.

This function returns zero if an error occurs, or greater than zero if no error

is detected.

13.2.5 Example

char * program name;

/* run a GEM AES graphics program after
termination of current program, no command tail */

/* GEM 1.1 version

shel write 1(1,

/* GEM 2.0 version

shel write 2(1,

1,

1,

¥

1, program name, "");

*f
1, program name, "");

l 7 Section 13 — Shell library AES-237
13.3 Shell Find shel find
I Shell Find is a useful function that searches the current DOS search path for a

particular filename, and if present returns the complete pathname, including
disk drive identifier, directory path name and file name.

13.3.1 Definition
l The Prospero C definition of Shell Find is :

WORD shel find(char ppath(]):;

l 13.3.2 Purpose

This function searches for a file in the current directory and all directories in

' the DOS search path. If it is found, the full file specification including drive
and path name is returned. Note that the array ppath is used for both input
and output.

13.3.3 Parameters

Parameter Type of Parameter description
I name parameter Function of parameter
ppath char [] File name and path

This array should be set up to contain the name
and extension of a file for which the application

wants to search. The function will search for
l this file in every directory in the current DOS

search path, and also in the root, GEMDESK,

GEMSYS and GEMAPPS directories. If the file
l is found, the complete file specification
including drive and pathname is returned in the
same parameter.

7 AES-238 Section 13 — Shell library
13.3.4 Function Result

This function returns zero if an error occurs, usually indicating that the file is
not found and the contents of ppath are not valid. A value greater than zero
indicates that there is no error, and the file is found.

13.3.5 Example

char filename[80];

strcpy (filename, "MYNAME.RSC");
if (shel find(filename))
rsrc_load(filename);
else
{ form alert(l,"[1] [No Resource File] [OK]");
exit (3);
}

l

l Y Section 13 — Shell library AES-239

13.4 Search Shell Environment shel envrn

The DOS Environment is a message area in which programs may “pin up
notices” and also scan to see what goes. It includes information as to the current
command processor, the current path, prompt, and any other information
which the operating system or applications may place there. The format
includes an =, for example the line COMSPEC=C: \COMMAND . COM tells MS-
DOS where to load the command processor from on termination of a program
which removed it from memory (the current environment may be displayed
by typing SET at the MS-DOS prompt). Search Shell Environment is a useful
function that searches the Environment for a particular parameter string, for
example “PATH=", and if present a copy of the string corresponding to that
parameter is returned.

13.4.1 Definition

The Prospero C definition of Search Shell Environment is :

WORD shel envrn(char pvalue[], const char *psrch);

13.4.2 Purpose

This function allows an application to search the Environment for a particular
parameter. The parameter string for which the application is searching
(including the ‘=") is passed in the parameter psrch. The string immediately
following the ‘=" will be returned in the array pvalue. This will be an empty
string if the value was not found. See also the Prospero C function getenwv.

7 AES-240

Section 13 — Shell library

13.4.3 Parameters

Parameter Type of
name parameter

Parameter description
Function of parameter

pvalue char []

psrch const char *

13.4.4 Function Result

Parameter value found

The string following the equals sign of the
requested parameter will be returned in this
string. No length checking is performed, and if
the result is longer that the string used to hold it,
the application may crash. If the parameter is
not found, a null string will be returned.

Parameter to search for

Points to a string specifying the parameter in the
environment string for which the application is
searching, including the ‘=’ sign.

This function always returns one.

13.4.5 Example
char path[80];

shel envrn (path,

"PATH=") ;

if (path[0] != '\0")

{

/* There is a search path set up - use it */

l / Section 13 — Shell library AES-241
13.5 Return Default Application shel rdef
[Return Default Application allows an application to discover the name and path

specification of the application which will run when it terminates — normally
this will be the GEM Desktop application.

[This function is not provided in GEM version 1.1.
l 13.5.1 Definition
The Prospero C definition of Return Default Application is :
[void shel rdef(char lpcmd([], char lpdir([]):;
13.5.2 Purpose
l This function returns the name and directory of the default application, which
is the one which will execute when the current application terminates, unless
shel write (section 13.2) has been used to specify that another application
[is to be run. The default application is usually the GEM Desktop application,

though this may be altered using shel wdef (section 13.6). This function is
not supported in GEM version 1.1

13.5.3 Parameters

l Parameter Type of Parameter description
name parameter Function of parameter
l lpcmd char[] Default application name

This array returns the name of the default

application. GEM AES states that the space must
l be at least 32 characters, although only a

maximum of 12 will be used for a file name.

l lpdir char [] Default application path

This array returns the directory path of the
| default application.

/ AES-242 Section 13 — Shell library

13.5.4 Function Result

No value is returned.

13.5.5 Example
char name[33], path([33];

shel rdef (name, path);
if (strcmp (name, "DESKTOP.APP") != 0)
{ /* an abnormal state of affairs */

}

I y Section 13 — Shell library AES-243
13.6 Set Default Application shel wdef

Set Default Application allows an application to change the name and path
l specification of the application which will run when it terminates — unless
changed this will be the GEM Desktop application.

[This function is not provided in GEM version 1.1.
[13.6.1 Definition
The Prospero C definition of Set Default Application is :
l void shel wdef(const char *lpcmd, const char *1lpdir);
I 13.6.2 Purpose

This function sets the name and directory of the default application, which is
the one which will execute when the current application terminates, unless
l shel write (section 13.2) has been used to specify that another application
is to be run. The default application is usually the GEM Desktop application,
unless altered using this function. The current default application may be
I discovered using shel rdef (section 13.5). This function is not supported in
GEM version 1.1

7 AES-244

Section 13 — Shell library

13.6.3 Parameters

Parameter Type of

Parameter description

name parameter Function of parameter

lpcmd const char ¥ Default application name
This parameter points to a string containing the
new name of the default application.

lpdir const char * Default application path

13.6.4 Function Result

No value is returned.

13.6.5 Example

This parameter points to a string containing the
new directory path of the default application.

char name[33], path([33];

shel rdef (name, path);

if (strcmp (name,

"DESKTOP.APP") == 0)

/* No-one else has set it, so ... */
shel_wdef("MYPROG.EXE","C:/");

l Z Section 14 — Extended Graphics library AES-245
14 EXTENDED GRAPHICS LIBRARY

This section contains descriptions of the Extended Graphics Library functions,
[in the following sub-sections.

Section Function description Binding name
l 14.1 Calculate Box Increments xgrf stepcalc
l 14.2 Draw XORed Boxes xgrf 2box

These functions are provided in GEM version 2.0 to allow applications to
! create ‘zoom box’ effects, as the functions in the Graphics and Form libraries
which used to perform this function have been removed to save space.

7 AES-246 Section 14 — Extended Graphics library
14.1 Calculate Box Increments xgrf_stepcalc

Calculate Box Increments is designed to help an application draw zoom boxes,
and was provided in GEM version 2.0 to compensate for the removal of the
zoom box functions graf growbox and graf_shrinkbox (section 8.4)
from GEM version 1.1.

This function is not provided (or needed) in GEM version 1.1.

14.1.1 Definition

The Prospero C definition of Calculate Box Increments is :
WORD xgrf stepcalc (WORD orgw, WORD orgh,
WORD xc, WORD yc, WORD w, WORD h,

WORD *pcx, WORD *pcy, WORD *pcnt,
WORD *pxstep, WORD *pystep);

14.1.2 Purpose

This function calculates the required increments to draw a zoom box on the
screen. It is not supported in GEM version 1.1

14.1.3 Parameters

Parameter Type of Parameter description
name parameter Function of parameter
orgw WORD Initial width

orgh WORD Initial height

The initial width and height of the box in pixels.

xc WORD Final X coordinate
yc WORD Final Y coordinate
w WORD Final width
h WORD Final height

The final coordinates and size of the box.

i / Section 14 — Extended Graphics library . AES-247

pcx WORD *
pcy WORD *

l pcnt WORD *

[pxstep WORD *
pystep WORD *

l 14.1.4 Function Result

Centred X coordinate
Centred Y coordinate

These parameters point to objects which return
the centred x and y coordinates at the end of the
zoom.

Step count

This parameter points to an object which
returns the number of boxes to be drawn for the
Zoom.

X step increment
Y step increment

These parameters point to objects which return
the amount to be added to the x and y
coordinates for each step in the zoom. These
parameters may be passed to the function
xgrf_2box to cause the boxes to be drawn.

This function returns zero if an error is detected, and greater than zero if no
error is detected.

14.1.5 Example

l WORD count;
WORD cx, cy, xstep, ystep;
/* Zoom large box to small one in top left corner */
l xgrf stepcalc(100, 100, 10, 10, 10, 10,
&cx, &cy, é&count, &xstep, &ystep):
’ /* Actually draw the boxes, from big box at 20,20 */
xgrf 2box (20, 20, 100, 100, O, count,

xstep,

ystep, 0);

7 AES-248 Section 14 — Extended Graphics library
14.2 Draw XORed Boxes xgrf 2box

Draw XORed Boxes is designed to help an application draw zoom boxes, and
was provided in GEM version 2.0 to compensate for the removal of the zoom
box functions graf growbox and graf shrinkbox (section 8.4) from
GEM version 1.1.

This function is not provided (or needed) in GEM version 1.1.

14.2.1 Definition
The Prospero C definition of Draw XORed Boxes is :

WORD xgrf 2box (WORD xc, WORD yc, WORD w, WORD h,
WORD corners, WORD cnt,
WORD xstep, WORD ystep, WORD doubled) ;

14.2.2 Purpose

This function draws a series of XORed boxes on the screen, to give the
impression of a box expanding or shrinking to nothing. It is normally used in
conjunction with xgrf stepcalc (section 14.1) which provides some of the
parameters. This function is not provided in GEM version 1.1.

14.2.3 Parameters

Parameter Type of Parameter description
name parameter Function of parameter
xc WORD Initial X coordinate
yc WORD Initial Y coordinate

w WORD Initial width

h WORD Initial height

The coordinates and size (in pixels) of the first
box in the series of boxes.

|

, 7 Section 14 — Extended Graphics library AES-249
{

m—

——

corners

cnt

xstep
ystep

doubled

14.2.4 Function Result

WORD

WORD

WORD
WORD

WORD

Corners only flag

If this is 1, only the corners of the boxes will be
drawn, giving a faster zoom. Otherwise, the
value 0 should be supplied.

Step count

The number of steps in the series. If
xgrf stepcalc has been used to calculate the
increments, the value returned in pcnt should
be used.

X step increment
Y step increment

The x and y increments of each step in the series
of boxes. If xgrf stepcalc has been used to
calculate the increments, the values returned in
pxstep and pystep should be used.

Double steps flag

If this is 1, twice the number of boxes will be
drawn, giving a slower but smoother zoom.
Otherwise, the value 0 should be supplied.

This function returns zero if an error is detected, and greater than zero if no
error is detected.

14.2.5 Example

See section 14.1.5.

7 AES-250
15 INDEX OF FUNCTIONS

Section 15 — Index of Functions

Binding name Function Section Page
appl bvset Set Disk Configuration 3.5 19
appl_exit Exit Application 3.7 21
appl find Find Application 33 15
appl_init Initialize Application 3.1 11
appl _read Pipe Read 3.2 12
appl_tplay Playback Events 34 16
appl_trecord Record Events 34 16
appl_write Pipe Write 3.2 12
appl yield Application Yield 3.6 20
evnt_button Wait For Button Event 4.2 31
evnt_dclick Set Double Click Delay 4. 48
evnt_keybd Wait For Keyboard Event 4.1 30
evnt_mesag Wait For Message Event 44 37
evnt_mouse Wait For Mouse Event 4.3 34
evnt_multi Wait For Multiple Events 4.6 41
evnt_timer Wait For Timer Event 4.5 39
form_alert Draw Alert Box 73 144
form_button Check Form Button Input T 152
form_center Centre Dialog On Screen 1S 147
form_dial Reserve Screen For Dialog 7.2 141
form_do Process Form 7.1 138
form_error Draw Error Box 7.4 146
form_keybd Check Form Keyboard Input 7.6 149
fsel input Select File and Directory 10.1 183
graf dragbox Drag Box Within Rectangle 8.2 157
graf growbox Draw Zoom Boxes 8.4 162
graf handle Obtain Workstation Handle 8.7 169
graf mbox Draw Moving Box 8.3 160
graf_mkstate Return Mouse State 8.9 174
graf_mouse Set Mouse Form 8.8 171
graf rubbox Draw Rubberbanded Box 8.1 155
graf shrinkbox Draw Zoom Boxes 8.4 162
graf slidebox Track Sliding Box 8.6 167
graf watchbox Track Mouse In Box 8.5 164
menu_bar Display Menu Bar 54 52
menu_create Create Menu Bar 5.8 68
menu_icheck Check Menu Item 52 54
menu_ienable Enable Menu Item 53 56
menu_item Add Menu Item 5.10 72
menu_register Register Accessory 5.6 63
menu_text Alter Menu Text 5.5 61
menu_title Add Menu Title 59 70
menu_tnormal Menu Title Display 5.4 58

l

l ~# Section 15 - Index of Functions AES-251
Binding name Function Section Page
menu_unregister Unregister Accessory 5.7 66
objc_add Add Object to Tree 6.1 88
objc_change Change Object State 6.8 106
objc_create Create Object Tree 6.16 125
objc_delete Delete Object From Tree 6.2 90
objc_draw Draw Objects in Tree 6.3 92
objc_edit Edit Text Object 6.7 102
objc_find Find Object Under Point 6.4 95
objc_flags Return Object Flags 6.11 113
objc_item Insert Item into Object Tree 6.17 128
objc_newflags Set Object Flags 6.12 115
objc_newstate Set Object State 6.10 111
objc_newtext Set Object Text 6.14 119
objc_offset Calculate Object Offset 6.5 98
objc_order Alter Object Order 6.6 100
objc_read Read Object Header 6.15 121
objc_state Return Object State 6.9 109
objc_tedinfo Initialize Editable Text Object 6.18 133
objc_text Return Object Text 6.13 117
objc_write Write Object Header 6.15 121
rsrc_free Free Resource File Memory 12.2 223
rsrc_gaddr Get Resource Address 123 224
rsrc_load Load Resource File 12.1 221
rsrc_obfix Convert Object Coordinates 12.5 228
rsrc_saddr Store Resource Address 12.4 226
scrp_clear Clear Scrap Directory 9.3 181
scrp_read Read Scrap Directory 9.1 177
scrp_write Write Scrap Directory 9.2 179
shel _envrn Search Shell Environment 13.4 239
shel find Shell Find 133 237
shel_rdef Return Default Application 13.5 241
shel read Shell Read 13.1 232
shel wdef Set Default Application 13.6 243
shel_write_1 Shell Write (Gem version 1.1) 13.2 234
shel write 2 Shell Write (Gem version 2.0) 13.2 234
wind_calc Calculate Window Coordinates 11.9 212
wind_close Close Window 113 196
wind_create Create Window 11.1 192
wind_delete Delete Window 114 198
wind_find Find Window Under Point 11.7 208
wind_get Inquire Window Attributes 11.5 200
wind_info Set Window Info 11.10 215
wind_newdesk Set New Desktop 11.11 217
wind_open Open Window 11.2 194

Set Window Attributes 11.6 204

wind_set

7 AES-252

Section 15 — Index of Functions

Binding name

wind_title
wind_update
xgrf_2box
xgrf _stepcalc

Function

Set Window Title

Start or End Window Update
Draw XORed Boxes
Calculate Box Increments

Section

11.10
11.8
14.2
14.1

Page

215
210
248
246

Prospero Software
i ——_—7 LANGUAGES FOR MICROCOMPUTER PROFESSIONALS

Prospero C AES Bindings

	Front Cover
	Title Page
	Copyright
	Contents
	1: Introduction to GEM ARS
	2: Using GEM AES
	3: Application Library
	4: Event Library
	5: Menu Library
	6: Object Library
	7: Form Library
	8: Graphics Library
	9: Scrap Library
	10: File Selector Library
	11: Window Library
	12: Resource Library
	13: Shell Library
	14: Extended Graphics Library
	15: Index of Functions
	Back Cover

